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ABSTRACT

Browser fingerprinting is a widely used technique to uniquely iden-
tify web users and to track their online behavior. Until now, different
tools have been proposed to protect the user against browser finger-
printing. However, these tools have usability restrictions as they
deactivate browser features and plug-ins (like Flash) or the HTML5
canvas element. In addition, all of them only provide limited protec-
tion, as they randomize browser settings with unrealistic parameters
or have methodical flaws, making them detectable for trackers.

In this work we demonstrate the first anti-fingerprinting strategy,
which protects against Flash fingerprinting without deactivating it,
provides robust and undetectable anti-canvas fingerprinting, and
uses a large set of real word data to hide the actual system and
browser properties without losing usability. We discuss the methods
and weaknesses of existing anti-fingerprinting tools in detail and
compare them to our enhanced strategies. Our evaluation against
real world fingerprinting tools shows a successful fingerprinting
protection in over 99% of 70.000 browser sessions.
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1. INTRODUCTION

Browser fingerprinting is a technique for uniquely identifying
a user through slight variations in the system setup, which are re-
trievable by websites mostly using JavaScript, Java or Flash scripts
[7]. The differences originate from various hardware, network, or
software configurations that a user’s computer may have [24, 23,
22, 8]. These fingerprinting features are widely used to track user
behavior across different websites [28] and to establish detailed user
profiles [18, 9] for targeted advertisements [29].

Moreover, collected user profiles are often sold between track-
ers/advertisers and are rarely anonymized by removing real names or
addresses [30] (even if user profiles are shared in anonymized form,
they can easily be de-anonymized [5]). Connecting this data with
information gathered from online social networks, browser location,
online shopping or search queries, allows to reveal further privacy
sensitive information [26], including personal interests, problems
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or desires of users, real names and addresses, political or religious
views, as well as the financial status. Consequently, detailed user
profiles may influence credit scores [19] or risk assessments of
health insurers to a disadvantage of the user [6]. Furthermore, the
loss of anonymity can lead to price discrimination [39, 21], inference
of private data [10] or identify theft/fraud.

Mayer [20] and Eckersley [11] demonstrated that it was possible
to uniquely identify 94% of 470,161 users by rather simple finger-
printing techniques. Further studies [1, 2] revealed the prevalence
of browser fingerprinting in real world applications and showed that
pretty sophisticated fingerprinting methods exist. Fingerprinters
commonly use detailed information, such as system fonts, plug-in
version numbers, or even differences in graphic rendering engines
(using the HTMLS canvas element) as fingerprinting features [23].
Conceptually, every parameter which is rather stable over time and
likely different between users, is a potential fingerprinting feature.
This also includes exotic features like measuring the dimensions of
Unicode glyphs [13], checking for the existence of certain JavaScript
functionalities [22, 24], utilizing the drift from exact time in TCP
timestamps [17], checking the leakage of the battery status [31] or
retrieving a partial subset of visited websites [34]. However, these
advanced approaches have limited reliability (e.g., due to network
latencies) [15], and are mostly not used in the wild.

To protect the user against fingerprinting, a few tools [32, 27,
12, 38] were proposed, trying to hide unique browser features by
randomizing, blocking or deactivating them. Unfortunately, these
methods lack usability when browsing websites due to blocked
features, they are detectable by the fingerprinter [28, 25, 34, 11] due
to unrealistic features, or have flaws making users still identifiable.
We expose these issues in Section 2.

In this work, we present a robust approach to protect a user against
browser fingerprinting, implemented in our Disguised Chromium
Browser (DCB). Instead of disabling or randomizing system and
browser parameters, we use a large set of real world parameters
that are fixed for the entire browsing session and change auto-
matically for the next session. This prevents detectability through
unrealistic or constantly changing system parameters, if a finger-
printer requests a parameter multiple times. In addition, DCB is the
only tool that protect against Flash as well as canvas fingerprinting
without deactivating Flash and HTMLS5 canvas features. This sig-
nificantly enhances the usability of web browsers with integrated
anti-fingerprinting strategies. Through a thorough study of canvas
fingerprinting, we developed a novel and deterministic approach
to prevent canvas fingerprinting based on transparently modifying
the canvas element in every browsing session. In contrast to other
approaches, our solution is not based on adding patterns or noise
to the canvas output. Because the canvas element is never unique,
the fingerprinter is not able to detect our modifications and is not



able to re-identify the user. We show the robustness of the algorithm
and demonstrate that every generated canvas element is unique. In
contrast to other anti-fingerprinting tools, we also implemented a
new protection mechanism against the retrieval of system fonts via
Flash.

Finally, we evaluate our solution against real world fingerprinting
tools and demonstrate its effective protection against fingerprinting
by creating unique fingerprints in over 99% of 70.000 browser
sessions. We show that fingerprinters cannot notice the presence of
our counter-fingerprinting techniques due to enhanced protection
mechanisms inside the browser itself and the usage of real world
parameters.

2. RELATED WORK

Various research has been conducted on browser fingerprinting
features as well as user protection [8]. To obtain an extensive
and up to date list of fingerprinting features, we analyzed popular
fingerprinting scripts such as FingerprintJS', Coinbase Payment
Button?, and BlueCava® as well as data gathered by other researchers
[11,20, 24, 23,22,28, 2,27, 16]. The following list contains popular
fingerprinting features that are retrievable through JavaScript, Flash,
CSS or the HTTP header [8]:

System information: Device ID, operating system (version, ar-
chitecture, kernel), screen (resolution, height, width), color depth,
pixel depth, timezone, system fonts, system language, date and time,
CPU type, clock skew, battery status, mouse movement, keyboard,
accelerometer, multitouch capability, microphone, camera, audio
capabilities.

Browser information: Browser (version, vendor), User Agent,
navigator object, installed plug-ins, preferred and accepted lan-
guages, HTTP headers, JavaScript runtime, cookies enabled param-
eter, supported MIME types, browser history, do-not-track, HTML
canvas element, CSS features (font probing, display, etc.).

Network information: IP address, geographic location, TCP
timestamps, TCP/IP parameters, proxy-piercing.

Flash Capability Class: Version, manufacturer, serverString,
language, screenDPI*.

Canvas: HTML 5 provides a canvas element that can be used for
drawing / rendering 2D graphics and to inspect the image data with
pixel accuracy via JavaScript. In order to use the canvas element as
fingerprint, typically a fingerprinter first renders a defined text using
the function fillText() or strokeText(). Subsequently, the fingerprinter
inspects the unique rendering output using the function getlmage-
Data(), which returns the RGBA values for every pixel. Similarly,
by using the function toDataURL(), a Base64-encoded PNG image
containing the entire contents of the canvas can be obtained. The
unique fingerprint is then produced by hashing the extracted pixel
data. Because different graphic cards and rendering engines produce
slightly different (but stable) outputs, fingerprinters routinely make
use of this element [34, 1].

In the following we discuss prominent anti-fingerprinting tools
and show their weaknesses which we were able to overcome within
our proposed Disguised Chromium Browser (DCB).

The Tor Browser [32] is a modification of Firefox for browsing
the web through the anonymity network Tor. It implements several
countermeasures against browser fingerprinting [25], while focusing

Uhttps://valve.github.io/fingerprintjs
Zhttps://www.coinbase.com/docs/merchant_tools/payment_
buttons

3http://bluecava.com/opt-out/

“http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/flash/system/Capabilities.html
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on anonymity rather than usability. The anti-fingerprinting tech-
niques rely on disabling specific browser features like plug-ins and
the canvas element entirely, resulting in a limited usability and web
experience (while those features can still be activated by the user
to display common web content like Flash, the protection methods
become ineffective). Note that even with activated fingerprinting
protection the usage of Tor itself is detectable by fingerprinters [28,
25].

In addition, our experiments confirm that Tor’s font probing fin-
gerprint protection, which limits the number of fonts that can be
used by the website, can still be circumvented [14] by using many
dynamically generated iframes. In summary, the Tor Browser can
not effectively protect the user against fingerprinting. In contrast
to Tor’s strategy, our solution uses a large set of real world data
to substitute original browser features; furthermore we manipulate
Flash and canvas outputs, rather than disabling these functionalities
altogether.

FireGloves [7] is a Firefox browser extension that disables access
to specific JavaScript objects (like navigator.plugins) instead of
disabling browser plug-ins entirely. However, an empty list of
plug-ins might be used as fingerprinting feature, since this is not
a common behavior. Moreover, plug-ins can still be instantiated
and detected. In comparison, DCB performs a smart manipulation
of the plug-ins minor version number in order to guarantee plug-in
functionality while preventing fingerprinting. Further, FireGloves
allows automatic randomization of specific browser settings. This
strategy can be detected by fingerprinters through constant changes
to (potentially) unrealistic random settings. Similar to the font
probing prevention of the Tor Browser, FireGloves limits the number
of fonts retrievable by a website — an approach which can be easily
circumvented (see above). In addition, other font fingerprinting
methods like Flash and canvas font probing are not covered.

In contrast, DCB manipulates the browser internal font handling
itself, instead of limiting the font access. Another drawback of
FireGloves is the fact that it is a browser extension, and needs
to manipulate JavaScript functions instead of directly accessing
browser functionalities. This behavior can be detected and po-
tentially circumvented [28, 27]: A fingerprinter might use Ob-
Jject:getOwnPropertyDescriptor to check for manipulated JavaScript
objects. To avoid this, we implemented DCB directly in the browser.

PriVaricator [27] is a modified Chromium browser that tries to
prevent fingerprinting by randomly changing the browser proper-
ties whenever they are queried. For example, PriVaricator returns
a random subset of the actual plug-in list by filtering out single
entries from the navigator.plugin property. Nevertheless, since these
plug-ins can still be instantiated, it is possible to detect them. Fur-
ther, PriVaricator randomly manipulates the properties offsetHeight,
offsetWidth, and the function getBoundingClientRect() to prevent
font probing. Unfortunately, this implementation is detectable by
simply checking for deviations in the output of consecutive requests
to the same functions. Additionally, PriVaricator provides no means
against the retrieval of system fonts using Flash or the HTML 5
canvas element.

FPGuard [12] is a combination of a browser extension and a cus-
tomized version of Chromium for detecting and preventing browser
fingerprinting at runtime. It uses different hard coded heuristics
for detecting browser fingerprinting activities on each website sepa-
rately. The user can then decide to block or randomize the output of
the fingerprintable feature on untrustworthy websites.

Unfortunately, the authors do not go into detail on how the fin-
gerprinting features are randomized. More importantly, as shown in
[11, 28], simple randomization will increase a user’s identifiability,
as unrealistic values will occur. Furthermore, as studies have shown



[40], users are not able to decide whether a website is trustworthy or
not and will tend to trust a website, so that fingerprinting protection
will likely be disabled by users. In comparison, our solution auto-
matically randomizes fingerprintable settings with a set of realistic
values.

As another feature, FPGuard randomizes HTMLS5 canvas images
by adding slight noise before the image is read out. We assume that
the image manipulation done by FPGuard is non-deterministic. As
stated in previous research [34], this approach is detectable. Fin-
gerprinters can create two identical canvas objects and check for
differences in the generated image data. Our solution uses a deter-
ministic and transparent algorithm to manipulate canvas rendering
itself. This makes it undetectable to fingerprinters, since the output
will be the same for the entire browsing-session and different in the
next.

In order to prevent font enumeration, FPGuard randomly hides
fonts once a certain number of fonts has been loaded. This approach
is also non-deterministic, and can be detected by a fingerprinter by
checking for the existence of a font through several independent
requests. Flash based font enumeration is only blocked within
FPGuard by disabling Flash. This not only reduces the usability of
websites, but the absence of Flash can be used as fingerprintable
information [22]. Moreover, if the fingerprinter circumvents the
above mentioned hardcoded thresholds by requesting only a few
browser features through a set of dynamically generated iframes,
FPGuard will not be able to provide any protection. In contrast,
our solution is automatically applied to the fingerprintable features
without disabling any browser capabilities or loss of usability.

FPBlock [38] is another anti-fingerprinting tool intercepting a set
of HTTP / JavaScript requests and modifying or blocking requested
potential fingerprinting features. The goal of the tool is only to stop
third-party, cross-website fingerprinting by returning the same modi-
fied browser features saved for the this website, whenever the site is
visited again. The main disadvantage of FPBlock is its detectability,
since fingerprinters will notice the changing browser features trough
subsequently visited websites. Taking our discussion on canvas
fingerprinting in Section 4 into account, the canvas fingerprinting
solution employed in FPBlock is also potentially detectable, since it
only adds random noise to the canvas element.

CanvasFingerprintBlock [4] is a Google Chrome extension
that prevents canvas fingerprinting by modifying the functions to-
DataURL() and getlmageData() to only return an empty image when
called. Here, the fingerprint of a canvas element will always by the
same, hiding system-specific quirks. Unfortunately, this approach
decreases the usability of common websites, and increases the po-
tential identifiability of a user, since the output is always unique.
Our implementation does not manipulate the functions that are used
to retrieve the image data from the canvas. We chose a transparent
and undetectable randomization of the image itself, which does not
impair the user experience.

3. DISGUISED CHROMIUM BROWSER

In order to counter fingerprinting and prohibit re-identification of
users, two main strategies can be employed: (1) hide fingerprintable
features in order to make all users look the same, such as propagated
by Tor, and (2) hide the original features through randomization,
like done by FireGloves or PriVaricator.

In our anti-fingerprinting research we identified the advantages
of both strategies. Using this knowledge we enhanced the existing
strategies by new protection mechanisms, and implemented them
in one Disguised Chromium Browser (DCB). In this section, we
first present the architecture of DCB and subsequently describe our
strategies, the implementation, and the operation of DCB.
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3.1 Architecture and Implementation

We implemented DCB directly in the Chromium browser ver-
sion 34.0.1847.131 [35] because of three reasons: First, to avoiding
the detection of fingerprinting countermeasures through blocked or
intercepted JavaScript CallBacks [28, 27]. Second, to bind all finger-
printing protections in one tool. Third, to provide better performance
and browser speed.

We decided against modifying the Tor Browser [36], since it
applies certain countermeasures against fingerprinting that might
impede with our strategies. To tackle the effect of other tracking
mechanisms like cookies [8], we implemented our strategies to use
the private browsing mode of Chromium. The required effort to port
our implementation to newer versions of Chromium mainly depends
on the changes that have been applied in Chromium’s source code
in the meantime. Compiling our modified Chromium browser takes
a few minutes. Once updated and compiled, there is no performance
loss during runtime. The source code is available online’.

DCB relies on a client-server architecture, where a server-side
algorithm maintains a database of real world fingerprinting features
to enforce a robust browser configuration on the client. On the client
side, DCB applies the configuration selected by the server, together
with the implemented Flash and canvas fingerprinting protection.
DCB allows two strategies for distribution of browser configurations
to the client:

N:1 — Many Browsers, One Configuration
Since fingerprinters collect a multitude of fingerprinting features, the
likelihood of several browsers sharing the same system properties
is considerably low. For that reason, when fingerprinters observe
the same fingerprint more than once, they most likely will assume
the fingerprint to belong to the same browser as in a previous ob-
servation. The N : 1 strategy thwarts this approach by configuring
as many browsers (N) as possible to share the same configuration,
making all those browsers look the same to the fingerprinter. This
decreases the surprisal of observing a specific configuration and
limits the re-identification of one specific user.

1:N - One Browser, Many Configurations
In the 1: N strategy, the actual browser and system configuration
is hidden to the outer world in order to prevent re-identification by
fingerprinters. DCB in 1 : N mode constantly changes the browser
configuration on each start. Compared to existing tools like PriVari-
cator [27] or FPGuard [12], which randomly change fingerprintable
parameters, our approach randomizes features to realistic values
and prevents constantly changing system parameters. This limits
detectability.

3.2 Configuration Server

Every browser has a configuration (its original), consisting of
single-value features (like the Windows version), and of multi-value
features (such as lists of fonts). The configuration server is re-
sponsible to store such real world system and browser properties
(fingerprinting features) and to assign configurations to clients based
on the selected strategy. To ensure a realistic randomization of
features, we use a pre-stored data set of 23,709 real-world finger-
printing features. These anonymized features were gathered in a
large scale study [37] similar to Panopticlick [11]. Furthermore,
upon DCB startup, clients send their initial configuration to the
server, which is added to the database.

DCB can work either with a local or a global configuration server.
To guarantee trust, configuration servers may be operated by trust-

Shttp://www.seceng.informatik.tu-darmstadt.de/index.php/
research/software/, 8 GB modified Chromium source to be
compiled.



4. Adapt config

>

>
3. Generate new

. 5. Manipulate
config @ Client Flash & canvas
<
2. Save original 1. Generate
config Session ID

Figure 1: DCB: Initialization of a browser session and mode of
operation.

worthy organizations such as the CCC® or EFF’. Tackling potential
single-point-of-failure problems, the amount of servers needs to be
raised while the user base grows. To avoid traceability and privacy
problems, the server never saves any connection details such as
the IP address of users, and can be verified due to the open source
implementation.

We implemented the configuration server using CakePHP®, since
it is an easily expandable, model-view-control orientated framework.
The upload of a client’s configuration is done via HTTPS. Once the
client identifies a configuration change, the new configuration will
be sent to the sever.

3.3 Configuration Groups

It is important to pay attention to inconsistencies and usability
constraints when changing or hiding system and browser properties.
For example, if a specific operating system (OS) is propagated, the
list of plug-ins reported should match the OS. We decided to use
groups of configurations sharing similar values, so that no browser
adapts a configuration that contradicts its actual system configura-
tion. One specific configuration group could consist of all users
using browsers on the same OS and language. Here, all browsers
in this configuration group will only get those configurations (e.g.,
list of plug-ins), that are available for the given OS. Because a large
number of configuration groups is counterproductive in hiding the
user effectively, we predefined configuration groups for the user’s
language and different Windows versions (like Windows version
NT6.1 & English or Windows version NT5.0 & French). The fewer
groups exist, the smaller the surprisal observing any browser.

Depending on the actual system and therefore the configuration
group, the N : 1 strategy aims to set all fingerprintable features to the
most frequent parameters in this configuration group, fitting with
the user’s environment. This guarantees robustness and usability.
At the moment of development, the configuration contained the
following parameters: screen information, browser language, user
agent (Chrome & WebKit/Blink version, Windows architecture),
time and date, system fonts and plug-ins. Further, we use the most
common intersection of fonts and plug-ins of all browsers in the

group.
3.4 DCB: Mode of Operation

Once a new browser session is started, several steps are performed,
shown in Figure 1. First, DCB generates a random session identifier
ID (step 1). The ID is used as input in the canvas fingerprinting
protection algorithm as well as an identifier for the browsing session.
In the second step, DCB collects configuration information on the
client (such as fonts, User Agent, or plug-ins) into a JSON encoded
configuration file and sends it to the server.

If the N : 1 strategy is selected, the configuration server checks
if there exists a configuration group of clients that share similar

Ohttps://www.ccc.de
Thttps://www.eff.org
8http://cakephp.org
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features. If not, the server creates a new group that fits the browser’s
configuration. Otherwise, if a browser fits into an existing group, the
group’s configuration is revised and if necessary updated. This may
be necessary to adjust the property of a feature to the majority of
users’ configurations. Subsequently, the server returns the selected
configuration, encoded in JSON, to the DCB browser (step 3). This
strategy assures that the generated group configuration is based
on the most frequent, already stored configuration data, and the
best fitting configuration group for the client (depending on general
system features). The browser then adapts the new configuration
as its own (step 4), and manipulates the DLL file of Adobe Flash
Player (step 5) in order to change propagated values such as the
screen resolution or operating system. A full description of the
manipulation of Flash and system fonts are presented in Appendix
8.1. Specific manipulations of the fingerprinting features according
to the N : 1 strategy are detailed in Appendix 8.2.

If the 1 : N strategy is used, the server responds with a random
configuration taken from the database. This configuration is encoded
in JSON and subsequently sent to the browser (step 3). Steps 4 and
5 are equivalent to the procedure described for N : 1. Since DCB
modifies browser and Flash equally, a fingerprinter will see the
same parameters when settings are retrieved by JavaScript or Flash.
Finally, changes are fixed for the entire browsing session and reset
automatically for the next session. Details on how fingerprinting
features are manipulated in the 1 : N case are given in Appendix 8.3.

Note that a server is needed to gather and generate accurate
configurations for both strategies. The server aides in adapting one
configuration for a set of users (1 : N); in addition it stores realistic
(original) configurations for the N : 1 strategy.

4. CANVAS ANTI-FINGERPRINTING

Existing canvas anti-fingerprinting tools manipulate the canvas
readout functions toDataURL() and getlmageData() so that random
pixel noise (e.g. changing colors) is added in order to prevent fin-
gerprinting. As noted in [34], it does not suffice to add random
noise whenever image data is requested from the canvas. Finger-
printers can detect this noise through subsequent identical function
calls, comparing the results (image data) and filter changes. Various
strategies could be applied to counter the detection of modifying
getlmageData() or toDataURL(), but we argue that any approach
would face the common problem of detectability (see Appendix
8.4). In contrast, in our approach we modify the rendering of the
canvas itself, and always perform the same modification for the
entire browsing session.

4.1 Robust Canvas Fingerprinting Protection

Instead of randomly manipulating the canvas readout functions
toDataURL() or getImageData(), DCB deterministically changes
the canvas rendering function® directly for each browsing session.
This function is using fillText() and strokeText(), which covers all
known canvas fingerprinting approaches. Moreover, the approach
can be applied to new rendering functions used for fingerprinting.

We use the random session identifier, generated at Chromium
startup, to steer the modifications. Due to the randomness of the
session identifier, it is guaranteed that fil/Text() returns deterministic
values during a browser session but different ones in subsequent
browser sessions. Figure 2 illustrates the process.

When the internal method for handling fil/Text() requests is called,
we first backup the image buffer (step 1), and wait until the function
has finished rendering text (as part of the fingerprinting process)
into the buffer (step 2). In the next step we compare the previously

9CanvasRenderin gContext2D::drawTextInternal()
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Figure 2: Canvas processing algorithm.

saved image data with the new image data in the buffer and store the
positions of every pixel that has changed (step 3). In the next step
we apply our image manipulation algorithm (step 4) as described in
the next paragraph. Finally, the image data is returned (step 5).

4.2 Image manipulation algorithm

The algorithm is implemented in C++, since native functions will
render canvas elements faster'?. The image manipulation algorithm
works on a per-pixel basis, and is only applied to pixels that are
close to a color border; i.e., to pixels where its top, right, left, and
bottom neighbor do not share the same values. We encode a pixel
p as (r,g,b,a), where r,b,g,a are the red, green, blue, and alpha
values r,g,b,a € {0,..., 255}. We modify p to p’ by adding an offset
to r,g,b. We first concatenate r, g, b and a with the pseudo random
session identifier s generated at startup, apply the SHA256 hash,
and call the result 7. The offset is computed by taking subsequent
blocks of 20 characters from ¢ modulo a constant ¢, which is by
default set to 3. Then, for each r, g, b we either add or subtract the
offset depending on whether their value was above or below 128,
resulting in p’.

Note that the image manipulation is deterministic and due to the
slight image changes not visible to the user (using the default setting
¢ = 3). Therefore, it is not possible for fingerprinters to detect this
strategy and to remove or subtract any modification from the canvas
to reconstruct the original image, like suggested in [3]. Using high
values for ¢, for example ¢ = 50, is not necessary, as this does not
increase the effectiveness of the algorithm and will only make the
changes more visible (blurring the image). Assuming a canvas with
1806 pixels, containing a total of 1030 different colors, and using
the standard value of ¢ = 3, we already get 31030 &~ 2.722 x 10*!
possible combinations in changing the pixel values. As shown in
Section 5.3, this is enough to prevent fingerprinting.

5. EVALUATION

We tested DCB with both strategies N : 1 (many browser, one
configuration) and 1 : N (one browser, many configurations) for
its effectiveness against real world fingerprinters. In addition, we
also evaluated our canvas anti-fingerprinting strategy independently
from the other features to show the robustness and practicality of
our approach.

5.1 1:N - One Browser, Many Configurations

The goal of the 1 : N strategy is to establish on each browser
startup a completely new configuration (fingerprint) so that finger-
printers will not be able to re-identify the user in the next browser
session. In addition, the strategy shall guarantee realistic settings
and an unchanged user experience on the web.

We examined the effectiveness of DCB running in 1 : N mode
by analyzing the reported fingerprint of three popular fingerprinters:
FingerprintJS, Coinbase Payment Button, and BlueCava.

10A JavaScript implementation would be possible. However,
JavaScript CallBacks are detectable and can potentially be circum-
vented. We also noticed a slight delay of 1-2 seconds per page in our
first implementation, therefor we favored a native implementation.

41

5.1.1 Experimental Set-Up

We evaluated DCB under realistic conditions on a standard Win-
dows PC. To automatically simulate user behavior and the generation
of a new (modified) configuration by DCB, we started the browser
10,000 times on specific web pages (described next) for each finger-
printer. In every session and for every fingerprinter we saved and
compared the generated fingerprint.

FingerprintJS is an open source fingerprinting library written in
JavaScript. For retrieving FingerprintJS fingerprints we created a
web page that sends the fingerprint to a PHP script via an AJAX
request. To derive the fingerprint, we chose three fingerprinting
feature sets FS1-FS3 that were present in an exemplary HTML
file delivered along with the library. Feature set FS1 includes the
features: User Agent, navigator language, color depth, time zone
offset, plug-in list, this.hasSessionStorage(), this.hasLocalStorage(),
window.indexedDB, typeof document.body.addBehavior, typeof un-
defined, typeof window.openDatabase, navigator.cpuClass, naviga-
tor.platform, navigator.doNotTrack. FS2 uses the same fingerprint-
ing features along with canvas information. FS3 adds the screen
resolution to the fingerprint of FS1.

Coinbase generates a fingerprint on the client via JavaScript (its
intended use is to protect Bitcoin payments against fraud). We
identified two functions, browserAnalytics() and fingerprint(), that
Coinbase uses to retrieve various information'! about a user’s com-
puter. While browserAnalytics() returns the information in plaintext,
fingerprint() creates the actual fingerprint by hashing the collected
information using MDS5. In order to compare the values of browser-
Analytics(), we also hash them with MD5 and store them along
with the value returned by fingerprint() in the database. For this
we isolated the fingerprinting code from the Coinbase website and
applied it on our own website.

BlueCava is a top 5 fingerprinter [27] that calculates its fingerprint
on the server side using a large quantity of fingerprinting features!2.
However, it provides an opt-out page where the fingerprint of the
browser can be retrieved. We make use of this feature in our test and
grab the fingerprint in an automated manner by using JavaScript.

5.1.2  Fingerprint Robustness of BlueCava

Eckersley [11] suggested that a fingerprinter might easily com-
pensate changes in some of the used features. In order to evaluate
the effectiveness of our strategies, we first analyzed the robustness
of fingerprints against manual configuration changes. For this exper-
iment we used BlueCava, since it scans a large set of fingerprinting
features.

We set up a virtual machine running Windows 7 and installed
Google Chrome version 34. We then installed a set of 2000 fonts
(BlueCava uses font probing with Flash and JavaScript [28]) and
started Chrome in private mode to retrieve the fingerprint from
BlueCava’s opt-out page. To estimate the robustness to changing
fingerprint features, we compared the fingerprints on random system
font changes, by adding 5 fonts, then deleting 173 fonts. In all cases
the fingerprint was identical. The fingerprint changed after deleting
all fonts apart from the standard system fonts and additionally dis-
abling four of Chrome’s standard plug-ins (not Flash). This indicates
that BlueCava’s fingerprint seems to be robust towards changes of a
user’s system configuration, making it a good benchmark to evaluate
the effectiveness of our 1 : N strategy.

5.1.3 Results

Table 1 presents the effectiveness of our 1 : N strategy in creating

Uhttps://coinbase.com/assets/application.js
Zhttp://ds.bluecava.com/v50/AC/BCACS js



Table 1: Fingerprint results evaluating 1:N strategy in 10,000 browser sessions [higher is better], and N:1 on 12 systems [lower is

better].
Fingerprints | Bluecava Fingerprint]JS Coinbase Canvas
in strategy FS1 FS2 FS3 FP1 FP2 script
I:N 10,000 | 9,910 | 10,000 | 9,992 | 10,000 | 10,000 | 10,000
N:1 1 1 2 1 7 8 N/A

distinct fingerprints. For both BlueCava and Coinbase, every fin-
gerprint in the set of 10,000 fingerprints of different DCB browser
sessions turned out to be unique. As the fingerprint change protec-
tion of BlueCava had been outwitted over the course of all 10,000
browser sessions, it would have been impossible for BlueCava to
track DCB users over consecutive browser sessions.

On Fingerprint]S we recorded 99 duplicates on two out of three
tested feature sets. For the features set FS1, 88 fingerprints occurred
twice and one fingerprint occurred three times. We explain this
behavior by the small amount of features that FingerprintJS collects
to generate the fingerprint. FS3, which is an extension of FSI,
additionally using the computer’s screen resolution, produced only
nine duplicates, as it uses more fingerprinting features that can
be modified by DCB. In practice, if a fingerprinter uses a smaller
fingerprint feature set, the fingerprint becomes less reliable and also
less unique, as can be seen in column FS1 and FS3. Note that
Fingerprint]S collects no information about the system fonts, which
normally contributes greatly to a fingerprint’s entropy and would
otherwise produce a unique fingerprint like for FS2.

Further, FS2, which adds HTML 5 canvas information to FS1’s
fingerprinted information, resulted in a set of 10,000 unique finger-
prints. This is due to our canvas fingerprinting protection mechanism
described in Section 4.1. In order to assess the effectives of our
strategy against canvas fingerprinting we also applied a separate test
run of canvas specific fingerprinting in Section 5.3.

5.1.4  Preliminary Conclusion

The non-commercial open source library Fingerprint]JS produced
over 99% unique fingerprints in 10,000 browser sessions. The com-
mercial fingerprinting scripts of Coinbase and BlueCava produced
100% unique fingerprints in the run of 10,000 browser sessions.
More importantly, even though BlueCava is applying means to com-
pensate for fingerprint changes, our 1 : N strategy produced changes
that were large enough to break out of these compensation mecha-
nisms. Therefore, we can conclude that our 1 : N strategy is highly
effective against long-term traceability, as a fingerprint cannot be
used to identify a user over consecutive browser sessions. In ad-
dition, we ensure website usability through automatic Flash and
canvas anti-fingerprinting protection mechanisms without disabling
those features. We also manually verified the perfect functionality
of the top 20 ranked Alexa.com websites.

5.2 N:1- Many Browsers, One Configuration

The N : 1 strategy aims at decreasing the surprisal of observing
one browser instance by increasing the number of browsers sharing
the same configuration. Therefore, evaluating this strategy required
the execution of DCB on several systems with varying configura-
tions. As above, we tested the N : 1 strategy by matching fingerprints
generated by the three introduced fingerprinters.

5.2.1 Experimental Set-Up

We installed our DCB on ten virtual machines (VM) and on two
physical computers as a reference. Since we wanted to guarantee
that these systems shared the same configuration group, we con-
figured all systems to have the same operating system (Windows
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7, Home Premium 32 bit or Professional 64 bit with Service Pack
1), and set the same browser language. We deliberately prepared
different VMs, by installing various programs, including different
office suites, PDF readers and other software. After the installation
we observed that up to 105 additional fonts were installed, with an
average of 22 fonts per virtual machine, and up to ten new browser
plug-ins. In addition, we added another 25 distinct fonts for every
VM, chose different screen resolutions, and selected various time
zones. Then, we executed DCB in N : 1 mode on all 12 systems
and tested it separately against each fingerprinter (BlueCava, Coin-
base, Fingerprint]JS) and the canvas fingerprinting script presented
in Section 5.3.

5.2.2 Results

Table 1 summarizes the results. For BlueCava, as well as the fea-
ture set FS1 and FS3 on FingerprintJS, all 12 systems generated the
same fingerprint, as intended. FS2, which adds the canvas element,
generated one identical fingerprint on one of the PCs, since the can-
vas protection mechanism can not be shared between DCB browsers
and is therefore not implemented in N : 13, For the Coinbase script
our algorithm performed not as good as expected. Out of 12 sys-
tems we noticed 7 fingerprint duplicates on FP1 and 8 duplicates
on FP2. This could be explained by the fact that Coinbase applies
less sophisticated compensation mechanism against configuration
changes or only checks for a small fixed set of features, and taking
less detailed fingerprints into account.

We can conclude that the N : 1 strategy is prone to additional
fingerprinting features that might not be covered by the implemen-
tation, as additional entropy for distinguishing between otherwise
equal configurations might be introduced. Therefore, this requires
to constantly consider new fingerprinting features.

5.3 Canvas Fingerprinting Set-Up

We implemented our countermeasures against canvas fingerprint-
ing in conjunction with the 1 : N strategy. We isolated the canvas
fingerprinting script of AddThis'# (a popular fingerprinter [1]), im-
plemented it on our website and examined the reported fingerprints
in an extensive study. In a run of 10,000 browser sessions we stored
every generated fingerprinting canvas image as MDS5 hash in our
database. To create the rendered image, the canvas fingerprinting
function uses fillText(), rendering text with the fallback font.

5.3.1 Results

It turned out that every single fingerprinting image in our set
of 10,000 browser sessions was unique (Table 1, column Canvas).
Therefore, our strategy against canvas fingerprinting is highly ef-
fective, as duplicate fingerprints are nearly impossible (see Section
4.1).

13 Implementing canvas fingerprinting protection in N : 1 would re-
quire a synchronization of the rendering data using a central render-
ing engine, which would produce a large overhead in computation
and communication time.

http://ct].addthis.com/static/r07/core130.js



5.4 Comparison of Anti-Fingerprinting Fea-
tures

Finally, we show in Table 2 the advantages of DCB by comparing
it against other anti-fingerprinting tools: Tor Browser version 4.0.8
[36], FireGloves [7], FPGuard [16], FPBlock [38], PriVaricator [27].
We were able to successfully overcome the weaknesses and flaws of
existing anti-fingerprinting tools and additionally implemented new
Flash as well as canvas fingerprinting protection.

6. CONCLUSION AND FUTURE WORK

In this work we showed flaws in existing anti-fingerprinting tools
and presented new approaches preventing fingerprinting. We imple-
mented and evaluated the effectiveness of two strategies N : 1 and
1 : N, which enhance browser/system fingerprinting protection with
the first built-in Flash fingerprinting protection without deactivating
Flash. The N : 1 strategy aims at decreasing the chance of being
uniquely identifiable in a large set of DCB browser instances by us-
ing the same browser configuration for all users. The 1 : N strategy
aims at breaking the fingerprint by applying major browser/system
configuration changes using real word properties every time a new
browser session is started.

Furthermore, we demonstrated the effectiveness of the first robust
solution against canvas fingerprinting that, in contrast to other ap-
proaches, does neither block nor randomly manipulate any canvas
functionality used to retrieve the rendered image data.

While our solution is resistant to tracking via cookies by employ-
ing the private browsing mode, we have no means to prevent tracking
via IP addresses. This could be solved by using an anonymity net-
work (proxy servers). Regarding the manipulation of Flash binaries,
we intend to implement our manipulation functionality directly in
the browser rather than using an external Python script. Moreover,
an automatic configuration update is planned when the user does not
restart the session but reconnects to the web. In a future study, we
also want to examine whether fingerprint databases of fingerprinters
aiming at detecting configuration changes could be poisoned by a
large set of false data, caused by an extensive usage of our 1 : N
implementation. For future work we want to implement further func-
tionality which by now are neither implemented in existing tools,
nor used by fingerprinters in the wild (mostly because of limited
reliability and network latency [15]).
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8. APPENDIX

8.1 Flash and System Font Protection Mecha-
nisms

DCB enables a general Flash and system font fingerprinting pro-
tection for both N : 1 and 1 : N strategies. In the following, we give
details on the implementation.

Flash Player Capabilities-Class: This class provides a wide range
of fingerprintable system information, such as screen information or
Windows version, which are not covered by other anti-fingerprinting
tools when Flash is activated in the browser. The Capabilities func-
tionality is compiled and encoded as hex strings inside the pepper-
flash.dll file. To ensure fingerprinting protection we therefore use
Python to manipulate the Capabilities-Class on all system param-
eters that are accessible by Flash. The parameters are changed to
match the values that are retrievable by JavaScript (like User Agent,
screen object or others), and were already modified by the DCB
configuration.

System Fonts: To counter font probing via CSS and JavaScript, we
internally change requested font names either to existing fonts or
non-existing fonts, depending on the strategy, whether we want to
fake the existence or non-existence of a system font. For example,
we might hide the existence of the font Comic Sans by changing the
request into a fictive font ’aaa’. Internally, the font will not be found
and therefore the browser’s default fallback font will be used, even
the font is actually installed on the system. Analogously, to fake the
existence of a non-installed font, DCB automatically renders the text
with another existing system font such as Comic Sans. Since Comic
Sans is not the fallback font, the fingerprinter will then assume the
existence of the requested font. We also manipulate the list of fonts
returned by Flash. Here, we either add new font names or filter out
existing names from Chromium’s internal font list (see Sections 8.2
and 8.3 for a detailed description).

8.2 Specific N:1 Implementation

In this section we describe the specific method how fingerprinting
features are manipulated in the N : 1 strategy.
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Screen Information: In order to achieve a common screen configu-
ration, the server will determine the most frequent screen resolution,
color depth, and pixel depth for every configuration group. The
server will also choose among those screen information that fit with
the available users’ screen (monitor).

Browser Language: Browsers using the same main language and
operating system are joined into a configuration group. All other
languages that are part of the HTTP_ACCEPT_LANGUAGE header
commonly have a lower priority (q value) than the main language.
We adapt a language with a lower priority only to a configuration
group in case that at least 3/4 of all browsers in the configuration
group share that common language.

Plug-in Information: Since we want to create configuration groups
that are as large as possible, our goal for the N : 1 strategy is to re-
duce the revealing of information to a minimum, making it easier to
join browsers into anonymity groups. For this reason we disable all
plug-ins that are not part of every browser of a configuration group,
which consequently can result in disabling all plug-ins that are not
shipped with Chromium. Along with this step, the most common
name and description of a plug-in is adopted in order to equalize the
possible version information. Note that we could have considered
plug-ins as usability constraint and therefore avoided the chance of
disabling any plug-ins. However, as this would reduce the size of the
configuration groups we decided against it. Yet, anti-fingerprinting
tools with a large user base could choose to handle plug-ins as con-
straint feature.

User Agent: For every configuration group the most common
Chrome version, WebKit/Blink version and Windows architecture
are selected and then shared between all browsers of that group.
System Fonts: The list of fonts is set to the common intersection of
fonts of all browsers in the configuration group. To share and apply
the list of fonts among the browsers of a configuration group, we use
the fact that the Windows version will be the same for all browsers
sharing the same configuration. Here, the final font configuration
only contains the fonts delivered with the initial operating system
installation (see Appendix 8.1).

Time and Date: In order to set a common time zone offset for every
browser of a configuration group, the most frequent offset of all
browsers in group is selected.

8.3 Specific 1:N Implementation

DCB applies the following fingerprint feature modifications in the
1 : N strategy to achieve the goal of a diverse browser configuration.

Screen Information: The screen resolution, color depth, and pixel

depth, are randomly selected among the already observed (pre-
stored) values. Regarding the available resolution, the height of the

selected screen resolution is reduced according to the height of the

taskbar of the selected Windows version. For example in Windows

7 the taskbar might have a height of 30 or 40 pixels depending on

the user choice. If more than one value is possible, the height is

chosen randomly.

Browser Language: While Flash and navigatorlanguage only

return the main language of the user, we do not need to change

these values, as we keep the main language for usability reasons.
We only manipulate the list of additional languages returned by

HTTP_ACCEPT_LANGUAGE. Languages are separated by a comma,
the language code and priority q are separated by a semicolon. Note

that the priority of the main language with the highest priority of 1

is omitted in the language header. Besides the main language and

every language with a priority >0.8, we randomly select up to three

additional languages with a random quality between 0.7 and 0.1



(steps of 0.1). We only add language codes according to BCP 47
[33] in order to prevent implausible language codes. An exemplary
language acceptance header and the priority of the corresponding
languages looks like: de-DE,de;q=0.8,en-US;q=0.6,en;q=0.4
Plug-in Information: If at least 5 different versions of a plug-in are
available in the database, the server will select a plug-in description
randomly. Otherwise, the server searches for version numbers in the
name and description and manipulates the minor version numbers.
If the minor version is not available, we randomly change the pro-
vided version number.

User Agent: We do not hide the actual browser vendor, as it could
be detected using vendor specific features [28]. Instead, we manipu-
late the version numbers according to real browser which provides
the necessary fingerprint diversity. The WebKit/Blink and Chrome
version numbers are changed according to the algorithm used to
manipulate the plug-in version numbers (described above). The
Windows version is randomly chosen among the already observed
and pre-stored Windows versions. The Windows architecture is
chosen from the fixed list of possible, vendor specific values, which
depend on the processor and the bit version of the operating system.
System Fonts: The list of fonts contains 90 to 320 randomly cho-
sen fonts from the list of previously observed fonts (i.e., from the
configuration server), along with the fonts that are shipped with the
specific Windows version. Therefore, only realistic font names will
be observed by a fingerprinter.

Time and Date: The function getTimezoneOffset() is commonly
used as a fingerprinting feature. In order to maintain consistency,
we change the time zone offset along with all other time and date
information retrievable by the Date class.
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8.4 Weaknesses in Counter Detection Strate-
gies of Canvas Manipulation

Although the below described strategies could be applied to hide
the manipulation of foDataURL() or getlmageData(), the weak-
nesses that may lead to their detection still exist:

(1) One may store hashes of previously generated canvases along
with their modified version for the duration of a browser session.
As soon as an image with the same hash is requested, the previous
modification of the image is returned to prevent the detection of
differences. Yet, this approach would be detectable if a fingerprinter
would add a localized change to the canvas and only compare non-
effected parts to a previously returned output. Since this approach
calculates the hash of the overall image, a new modification is ap-
plied causing the hash to change, unmasking the anti-fingerprinting
measures.

(2) To circumvent the comparison of localized changes, an anti-
fingerprinting algorithm could modify the localized changes and
copy the old modification of those parts that are exactly the same.
Still, the problem exists if many different changes are added and the
fingerprinter would compare a partial hash of those areas.

(3) In order to avoid the detectability of small modifications, an
algorithm could store all distinct canvases of a session. When a
new canvas is about to be manipulated, all areas of similarity of
prior canvases need to be re-placed with their respective recorded
images. Newly observed areas would be then modified separately
with random noise. Again, this approach could be detectable when
a fingerprinting script would render the same image information
twice on one image. If the image was new to the algorithm, it would
randomize both parts differently.





