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Abstract. The McEliece public key cryptosystem (PKC) is regarded
as secure in the presence of quantum computers because no efficient
quantum algorithm is known for the underlying problems, which this
cryptosystem is built upon. As we show in this paper, a straightfor-
ward implementation of this system may feature several side channels.
Specifically, we present a Timing Attack which was executed successfully
against a software implementation of the McEliece PKC. Furthermore,
the critical system components for key generation and decryption are
inspected to identify channels enabling power and cache attacks. Imple-
mentation aspects are proposed as countermeasures to face these attacks.

Keywords: side channel attack, timing attack, post quantum crypto-
graphy.

1 Introduction

Current cryptographic systems depend on complex mathematical problems such
as the factorization of large prime numbers and the calculation of discrete log-
arithms [1,2,3,4]. These systems are known to be vulnerable against certain al-
gorithms which could be implemented efficiently on quantum computers [5,6,7].
New classes of cryptographic schemes will be needed to guarantee system and
network security also in the presence of quantum computers. Examples for
theses classes are the hash-based cryptography, such as the Merkle signature
scheme [8,9], and code-based cryptography such as McEliece PKC [10,11].

The McEliece PKC is based on Goppa codes. The strongest known attack
is based on solving the NP-hard decoding problem, and no quantum algorithm
has been proposed which increases the efficiency of this attack [12]. So, although
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well-studied regarding its security against algorithm attacks, to the best of our
knowledge, the McEliece PKC has never been analyzed with respect to side
channel attacks. Side channel attacks target a cryptographic system taking ad-
vantage of its implementation [13,14,15,16]. Algorithm execution is associated
with measurable quantities such as power consumption and execution time. The
amounts of these quantities depend on the data processed by the algorithm. If
the processed data is secret such as a private key, then the measured quanti-
ties may disclose the secret totally or partially. To prevent side channel attacks,
countermeasures must be included during the implementation of the algorithm.

Our contribution

This paper addresses side channel attacks on the McEliece PKC and corre-
sponding countermeasures. It is constructed as follows. Section 2 presents as
preliminaries the Goppa code and the McEliece PKC in brief. Section 3 details
a timing attack on the degree of error locator polynomial, which is used in the
error correction step in the decryption algorithm. A theoretical justification for
this attack is presented as well as experimental results of the execution of the
attack against a software implementation. Also, countermeasures are addressed.
Section 4 outlines two other side channel attacks and related countermeasures:
a power attack on the construction of the parity check matrix during key gener-
ation and a cache attack on the permutation of code words during decryption.
Section 5 concludes the paper.

2 Preliminaries

In this section we assume that the reader is familiar with the basics of error
correction codes. We use the notation given e.g. in [17].

2.1 Goppa Codes

Goppa codes [18] are a class of linear error correcting codes. The McEliece PKC
makes use of irreducible binary Goppa codes, so we will restrict ourselves to this
subclass.

Definition 1. Let the polynomial

g(Y ) =
t∑

i=0

giY
i ∈ F2m [Y ] (1)

be monic and irreducible over F2m [Y ], and let m, t be positive integers. Then
g(Y ) is called a Goppa polynomial (for an irreducible binary Goppa code).

Then an irreducible binary Goppa code is defined as

G(F2m , g(Y )) = {c ∈ F
n
2 |Sc(Y ) :=

n−1∑

i=0

ci

Y − γi
= 0 mod g(Y )} (2)
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where n = 2m, Sc(Y ) is the syndrome of c, the γi, i = 0, . . . , n − 1 are pairwise
distinct elements of F2m , and ci are the entries of the vector c.

The code defined in such way has length n, dimension k = n − mt and can
correct up to t errors. The canonical check matrix H for G(F2m , g(Y )) can be
computed from the syndrome equation and is given in Appendix A.

2.2 The McEliece PKC

The McEliece PKC is named after its inventor [10]. It is a public key encryption
scheme based on general coding theory. In the following, we will give a brief
description of the individual algorithms for key generation, encryption and de-
cryption, without presenting the mathematical foundations behind the scheme or
the consideration of its security. For these considerations, the reader is referred
to [19].

Here, we describe the PKC without any CCA2-conversion, as it was origi-
nally designed. Without such a conversion, the scheme will be vulnerable against
adaptive chosen-ciphertext attacks [19]. However, a suitable conversion, like the
Korbara-Imai-Conversion [11], will solve this problem. In Section 3.2 we show
that the usage of a CCA2-conversion does not prevent the side channel attack
described in Section 3.1.

Parameters of the McEliece PKC. The security parameters m ∈ N and
t ∈ N with t � 2m have to be chosen in order to set up a McEliece PKC. An
example for secure values would be m = 11, t = 50. These values can be derived
from the considerations given in [19] or [20]. In addition, F2m and the γi are
public parameters.

Key Generation

The private key. The secret key consists of two parts. The first part of the
secret key in the McEliece PKC is a Goppa polynomial g(Y ) of degree t over
F2m according to definition 1, with random coefficients. The second part of the
private key is a randomly created n × n permutation matrix P.

The public key. The public key is generated from the secret key as follows. First,
compute H on the basis of g(Y ). Then take Gpub = [Ik | R] as the generator
in systematic form corresponding to the parity check matrix HP� (refer to
Appendix A for the creation of the parity check matrix and the generator of a
Goppa code).

Encryption. Assume Alice wants to encrypt a message v ∈ F
k
2 . Firstly, she has

to create a random binary vector e of length n and Hamming weight wt (e) = t.
Then she computes the ciphertext z = vGpub ⊕ e.

Decryption. In order to decrypt the ciphertext, Bob computes zP. Then he
applies error correction by executing an error correction algorithm, such as the
Patterson Algorithm described in Section 2.3, to determine eP. Afterwards, he
recovers the message v as the first k bits of z ⊕ ePP−1.
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2.3 Error Correction for Irreducible Binary Goppa Codes

In the following we briefly describe how error correction can be performed with
binary irreducible Goppa codes. The error correction of Goppa codes makes use
of the so called error locator polynomial

σe(X) =
∏

j∈Te

(X − γj) ∈ F2m [X ], (3)

where Te = {i|ei = 1} and e is the error vector of the distorted code word to
be decoded. Once the error locator polynomial is known, the error vector e is
determined as

e = (σe(γ0), σe(γ1), · · · , σe(γn−1)) ⊕ (1, 1, · · · , 1). (4)

The Patterson Algorithm is an efficient algorithm for the determination of the
error locator polynomial. It can be found in detail in [19]. We will restrict our
description to those features that are necessary to understand the attack we are
going to present. Also, we do not provide derivations for most of the equations
we specify in the following.

The Patterson Algorithm actually does not determine σe(X) as defined in
Equation 3, but computes σ̄e(X) = σe(X) mod g(X), where σ̄e(X) = σe(X) if
wt (e) � t.

The algorithm uses the fact that the error locator polynomial can be written
as

σ̄e(X) = α2(X) + Xβ2(X). (5)

Defining τ(X) =
√

S−1
z (X) + X mod g(X), with Sz(X) being the syndrome of

the distorted code word z, the following equation holds:

β(X)τ(X) = α(X) mod g(X) (6)

Then, assuming that no more than t errors occurred, Equation 6 can be solved
by applying the Euclidean algorithm with a breaking condition concerning the
degree of the remainder [19]. Specifically, the remainder in the last step is taken
as α(X) and the breaking condition is deg (α(X)) � � t

2�. It can be shown that
then, deg (β(X)) � � t−1

2 �.
From this, it follows that the polynomial σ̄e(X) defined over Equation 5 will

be of degree � t. In the case that the number of errors is no larger than t, from
Equation 3 it follows that deg (σ̄e(X)) = wt (e) since then σ̄e(X) = σe(X)

For the case of more than t errors, we give the following remark.

Remark 1. If wt (e) > t, then the deg (σ̄e(X)) = t with probability 1 − 2−m.

This remark can be justified easily: Since the σe(X) computed via Equation 3
would yield deg (σe(X)) = wt (e), we find that the calculation mod g(X) in
Equation 6 leads to polynomials σ̄e(X) of degree t with coefficients that we
can assume to be almost randomly distributed, where the leading coefficient is
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not necessarily non zero. But clearly, for random coefficients out of F2m , the
probability that the leading coefficient is not zero is 1 − 2−m, which is amounts
to 0.9995 for m = 11. Furthermore, experimental results confirm the claim of
the remark.

3 Attack on the Degree of the Error Locator Polynomial

The dependence of the degree of the error locator polynomial σ̄e(X) on the
number of errors in the decoding algorithm, which we examined in Section 2.3,
can be used as a basis of a chosen-ciphertext side channel attack. We will describe
it as a pure timing attack, though it clearly could be supported by incorporating
analysis of the respective power traces.

3.1 The Timing Attack

When computing the error vector according to Equation 4, the error locator
polynomial is evaluated 2m times. Clearly, in a naive implementation, the time
taken by the evaluation will increase with the degree of σ̄e(X).

The scenario for our attack is as follows: Alice encrypts a plaintext v to a ci-
phertext z = vGpub⊕e according to the algorithm described in Section 2.2. Eve
receives a copy of z, and mounts the side channel attack by submitting manip-
ulated ciphertexts zi to Bob, who applies the decryption algorithm according
to Section 2.2 to every single one of them. It is assumed that the decryption
algorithm makes use of the Patterson Algorithm. Eve is able to measure the ex-
ecution time of each decryption. In order to achieve a simple model, let us further
assume that the only cause of timing differences is the evaluation of the error
locator polynomial σe(X) in the Patterson Algorithm according to Equation 4.

The attack is described in algorithm 1. Here, sparse vec (i) denotes the vector
with zeros as entries except for the i-th position having value 1, and the first
position being indexed by 0. The key idea is to flip the bit at position i in z,
resulting in zi, and then to find out whether the i-th position of e was zero
or one. This in turn can be derived from the running time of the decryption
algorithm on input zi, since σ̄e(X) will be of degree t−1 if ei = 1, and of degree
t otherwise.

3.2 The Timing Attack in the Presence of a CCA2-Conversion

A conversion like Pointcheval’s [21] or Korbara and Imai’s [11] makes sure that ci-
phertexts manipulated in the way described in algorithm 1 will not be decrypted,
i.e. no plaintext will be output by the decryption device. This is ensured by a
respective check performed after the error vector e has been determined via the
Patterson Algorithm.

However, the possibility of our side channel attack is not affected by this fact,
since in the presence of the conversion the attacker will still find a substring of
the ciphertext which actually is equivalent to z = vGpub ⊕ e and choose this as
the target of his manipulations. Furthermore, the Patterson Algorithm will run
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Algorithm 1. Timing Attack against the evaluation of σe(X)
Require: ciphertext z, and the parameter t, of the McEliece PKC.
Ensure: a guess e′ of the error vector e used by Alice to encrypt z.
1: for i = 0 to n − 1 do
2: Compute zi = z ⊕ sparse vec (i).
3: Take the time ui as the mean of N measured decryption times where zi is used

as the input to the decryption device.
4: end for
5: Put the t smallest timings ui into the set M .
6: return the vector e′ with entries e′i = 1 when ui ∈ M and all other entries as

zeros.

through all its steps regardless of whether the ciphertext has been manipulated
or not. Only afterwards the algorithm will detect the manipulation and refuse
decryption.

3.3 Implementation of the Attack

We realized the attack against a software implementation of McEliece. Specif-
ically, our target was the implementation of the scheme in the FlexiProvider1,
which is a Java Cryptographic Extension (JCE) Provider. The implementation
uses the Patterson Algorithm in the decoding step of the decryption phase. For
simplicity, we did not include any CCA2-Conversion.

We executed the attack on an AMD Opteron 2218 CPU running at 2.6 GHz
under Linux 2.6.20 and Java 6 from Sun. A single attack with N = 2 took
less than 2 minutes, which makes it very effective and useable in a real world
scenario. Even a remote attack against a TLS server using McEliece seems to be
possible.

The security parameters we used for the attack are m = 11 and t = 50. The
attack algorithm was realized just as depicted in algorithm 1. With the choice of
N = 2 we recovered all positions of e correctly in half of the executed attacks.
The exact results can be found in Appendix C.

3.4 Proposed Countermeasure

The reason for the comparatively high efficiency of the attack is that the error
locator polynomial is evaluated 2m times in the Patterson Algorithm. For the
security parameter m = 11, as in our example, these are 2048 evaluations. This
means that even a small difference in a single evaluation will be inflated to
considerable size.

In order to avoid the differences in the decryption time arising from the dif-
ferent degrees of σ̄e(X), it is a straightforward countermeasure to simply raise
its degree artificially in the case that it is found to be lower than t. Note that
furthermore all coefficients in the polynomial of degree t have to be non zero in
order to avoid timing differences.
1 http://www.flexiprovider.de/
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3.5 Improvements of the Attack

The simple version of the timing attack provided in algorithm 1 already en-
abled successful attacks under idealized conditions. For real life scenarios, two
improvements of the attack are feasible.

– Once the attacker has found one position j with ej = 1, he can apply an im-
proved version of the attack. Specifically, he can then create the manipulated
ciphertexts

z′
i = zi ⊕ sparse vec (j)

for all i �= j and use them as input for the decryption device. As a result,
each z′

i will contain either t or t−2 errors. Where in algorithm 1 the attacker
had to distinguish between timings resulting from degrees of σ̄e(X) differing
by 1, this difference in degrees is now 2, resulting in an even higher difference
in the timings.

– In the attack given in Algorithm 1, it is already provided that the attacker
takes the average time of multiple decryptions of the same ciphertext in order
to decrease noise. Still, certain deterministic timing differences could arise
in the algorithm, causing certain timings up and uq to differ considerably,
even though ep = eq.

However, once the attacker knows a number of error and non-error po-
sitions, he can modify zi in a way such that the number of errors remains
constant. Each of these ciphertexts will contain the same number of errors
with respect to the Goppa code as zi, but will cause the Patterson Algorithm
to start with a different syndrome. Thus, if the attacker averages over the
corresponding execution times, he can eliminate the possible timing differ-
ences arising from certain syndromes.

4 Other Side Channels

The McEliece system contains several other operations, which enable side chan-
nel attacks, if these operations are implemented in a straightforward manner,
i.e. one-to-one according to the algorithm specification. In this section, two of
these critical operations are presented: the setup of the parity check matrix H
during key generation and the calculation of the matrix zP during decryption.
The first one presents a potential side channel for power attacks [14], the second
one for cache attacks [22].

4.1 Generation of Parity Check Matrix

The parity check matrix H is generated by applying complex matrix operations
over F2m based on the secret polynomial g(Y ). According to [19] an element of
the check matrix H can be written as

hi,j = g(γj−1)−1
t∑

s=t−i+1

gsγ
s−t+i−1
j−1 , (7)

where i = 1, . . . , t and j = 1, . . . , n (see Appendix A).
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g31 g21 g3γ0 g11 g2γ0 g3γ
2
0 g31 g21 g3γ1 g11 g2γ1 g3γ

2
1

h1,1 h2,1 h3,1 h1,2 h2,2 h3,2

time

Fig. 1. Execution Order: Polynomial Multiplication

Inspecting this relation, two operations may be critical for power attacks [16].
These are the polynomial evaluation for the field elements g(γj) and the multiplica-
tion of the polynomial coefficientswith the powers of the field elements gsγ

s−t+i−1
j−1 .

Polynomial multiplication. Figure 1 shows schematically the multiplication
steps executed to calculate the first and second column of H. Here, we use t = 3
for simplicity. Remember that H has t rows and n columns.

From this figure it is evident that the multiplication steps and, thus, their
power traces reveal high regularity. An exact application of the above relation
results in multipliying g3 by 1 once for each column of H. Obviously, the power
trace of these products may be used to indicate the start of the processing of
a new column, which is essential for power attacks. Furthermore, it is highly
probable that the power traces of g2γ0 and g2γ1 can be used to estimate the
secret coefficient g2 as the γi are public.

To complicate this attack, the multiplications gsγj−1 must be performed in a
manner, which does not leak information on gs. This can be achieved (at least
partially) by masking. Each gs is multiplied by a random value ri ∈ F2m before
multiplying it by the field element γj−1. The de-masking using r−1

i is performed
after calculating the sum:

hi,j = g(γj−1)−1r−1
i

(
t∑

s=t−i+1

(rigs) γs−t+i−1
j−1

)
. (8)

In the above equation, the parentheses denote in which order the evaluation shall
be performed.

This masking will be even more profitable if it is combined with a random-
ization of the order of term estimations. By this means the association of power
traces with time is blurred considerably.

Polynomial evaluation. This operation is highly time-consuming and is per-
formed in a pre-estimation phase, as a rule. The description in this section relates
to this pre-estimation. Referring to the definition of the generator polynomial
g(Y ), its evaluation for a field element γj can be written as

∑t
i=0 giγ

i
j . This means

that polynomial evaluation amounts to multiplication over F2m with highly reg-
ular patterns, which again presents a possible side channel for power attacks.
Fig. 2 depicts the chronological sequence of evaluating a polynomial of degree
t = 3 for two field elements in a straightforward implementation. Similar to
the case presented previously, countermeasures of masking and randomization
should be employed.
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g01 g1γ0 g2γ
2
0 g3γ

3
0 g01 g1γ1 g2γ

2
1 g3γ

3
1

g(γ0) g(γ1)

time

Fig. 2. Execution Order: Polynomial Evaluation

Using polynomial evaluation as power side channels is also possible in the
decryption phase when the error vector is determined according to Equation 4.

4.2 Estimation of the Matrix zP

Presenting a possible power analysis attack scenario in Section 4.1, we will now
focus upon a possible cache attack [22] scenario. Cache attacks, a specific type
of so called microarchitectural attacks, have already been successfully mounted
against software implementations [23].

The decryption of a ciphertext may also leak the other private key part, the
permutation matrix P. We assume that the permutation matrix itself is not
stored directly as a matrix in the memory; it is rather implemented as some
lookup-table for the rows and columns to save memory. This lookup-table is
used in the decryption phase to compute zP and eP.

In a straightforward implementation one may calculate these permutations by
the following algorithm:

Algorithm 2. Permutation of z′ = zP
Require: Private permutation matrix P lookup-table tP and ciphertext vector z ∈ F

n
2 .

Ensure: The permutation z′ = zP.
1: for i = 1 to n do
2: Lookup j = tPi .
3: Set z′

i = zj .
4: end for
5: return permutated vector z′.

The code in algorithm 2 will create memory access on addresses depending on
the secret permutation P. An attacker can use this to gain information about P.
Let us assume a scenario where the attacker has access to the system running the
decryption process, and where the CPU of the computer supports simultaneous
multithreading. The attacker executes a spy process parallel to the process of
the decryption application. Let us further assume that the attacker knows the
position of z in the main memory. Ideally, between any two iterations of the
loop in algorithm 2, the spy process erases the content of z from the CPU cache
and fills the respective cache blocks with some data of his own. It also regularly
performs memory access to this data, measuring the execution time for this
access.
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From these timings, gathered while the decryption process was running in
parallel, the attacker will be able to judge with certain precision which part
of z was accessed during which iteration. Specifically, assume that for a certain
iteration the time taken by the memory access of the spy process to a certain date
indicates a cache miss. Then the attacker knows that the decryptions process
accessed just that part of z, which was stored in the same cache block. Note that
the rule relating main memory addresses to cache blocks is system dependent
and thus known to the attacker.

Due to the fact that in general the size of a cache block will be larger than
one entry zi, usually the attacker will not be able to get the exact index of the
entry of z which has been accessed. Instead he will find out that for example an
entry between z0 and z31 must have been accessed. If the memory location of
z differs in different executions and does not always have the same offset from
the beginning of a cache block, the attacker might be able to narrow the access
down to a single entry of z.

In a weaker scenario, where the system running the decryption process does
not support simultaneous multithreading, the attacker will not be able to peek
into the decryption routine at every iteration, but with some probability the
operating system will perform a context switch, interrupting algorithm 2 and
continuing the spy process. In such a scenario the attack would be much harder,
but still not impossible, assuming the attacker can repeat the measurement often
enough.

Countermeasures. A possible contermeasure is to modify algorithm 2 to an
algorithm whose memory access doesn’t depend on the content of tP. We have
implemented algorithm 3, which satisfies this requirement. It has constant run-
ning time, performs no jumps depending on secret input, and does only access
memory addresses depending on public input. Therefore, it should be secure
against timing-, cache-, and branch prediction attacks [24]. Unfortunatly, this
increases the running time from O(2m) to O((2m)2). Here, the operators ∼, &,
>>, & =, |, and − are used as they are used in the C programming language.

The idea behind algorithm 3 is the following: As in algorithm 2, tPi is read in
line 2. Algorithm 2 would now read zj and write it to z′i. The write to z′i is not
critical, because i is public, but j depends on P and a read of zj would reveal
information about j and therefore about P.

Algorithm 3 uses the following countermeasure. In line 3, z′i is initialized with
0. In line 4, a new loop is started, where k runs from 0 to n−1. In every iteration,
z′i is read to l and zk is read to m. Now, we have to distinguish between two
cases:

1. j = k: In this case, we want to write m = zk = zj to z′i, as in algorithm 2.
2. j �= k: In this case, we don’t want to modify z′i. But to create the same

memory access as in case 1, we assign l = z′i to z′i, and therefore leave z′i
unchanged.

In order to do this without an if-then-else statement, the following trick is
used by algorithm 3: The XOR-difference s between j and k is computed in
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Algorithm 3. secure permutation of z′ = zP
Require: Private permutation matrix P lookup-table tP and ciphertext vector z ∈ F

n
2

Ensure: The permutation z′ = zP
1: for i = 0 to n − 1 do
2: j = tPi
3: z′

i = 0
4: for k = 0 to n − 1 do
5: l = z′

i

6: m = zk

7: s = j ⊕ k
8: s | = s >> 1
9: s | = s >> 2

10: s | = s >> 4
11: s | = s >> 8
12: s | = s >> 16
13: s & = 1
14: s = ∼ (s − 1)
15: z′

i = (s&l)|((∼ s)&m)
16: end for
17: end for
18: return z′

line 7. If the difference is 0, j = k and we are in case 1. If the difference is not
0, then we are in case 2.

Lines 8 to 14 now make sure, that if s is not 0, all bits in s will be set to 1.
Now, the expression (s&l)|((∼ s)&m) will evaluate to l, and l will be written to
z′i in line 15.

If s was 0 after line 7, s will still be 0 after line 14. Now the expression
(s&l)|((∼ s)&m) will evaluate to m, and m will be written to z′i in line 15.

5 Conclusion

In this paper we have shown that the McEliece PKC like most known public
key cryptosystems, bears a high risk of leaking secret information through side
channels if the implementation does not feature appropriate countermeasures.
We have detailed a timing attack, which was also implemented and executed
against an existing software implementation of the cryptosystem. Our results
show the high vulnerability of an implementation without countermeasures.

Furthermore, we presented a feasible power attack against the key generation
phase, where certain operations involve the same secret value repeatedly. In
general, key generation is a more difficult target for a side channel attack than
decryption, because in contrast to that operation the attacker can only perform
one measurement. But our considerations show, that without countermeasures,
an implementation of the key generation might be vulnerable to a sophisticated
power attack.
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The cache attack designed to reveal the permutation that is part of the secret
key, again benefits from the fact that the number of measurements the attacker
may perform is in principle without any restraint. Thus the proposed secure al-
gorithm seems to be an important countermeasure for software implementations
intended for use in a multi user operating system.

Clearly, other parts of the cryptosystem require to be inspected with the same
accuracy. This is especially true for the decryption phase, where the secret Goppa
polynomial is employed in different operations.

The McEliece PKC, though existing for 30 years, has not experienced wide
use so far. But since it is one of the candidates for post quantum public key
cryptosystems, it might become practically relevant in the near future. With
our work, besides the specific problems and solutions we present, we want to
demonstrate that with the experience gathered in recent work exposing the vul-
nerabilities of other cryptosystems, it is possible to identify the potential side
channels in a cryptosystem before it becomes commonly adopted.
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A Parity Check Matrix and Generator of an Irreducible
Binary Goppa Code

The parity check matrix H of a Goppa code determined by the Goppa polynomial
g can be determined as follows. H = XYZ, where

X =

⎡

⎢⎢⎢⎣

gt 0 0 · · · 0
gt−1 gt 0 · · · 0

...
...

...
. . .

...
g1 g2 g3 · · · gt

⎤

⎥⎥⎥⎦ ,Y =

⎡

⎢⎢⎢⎣

1 1 · · · 1
γ0 γ1 · · · γn−1

...
...

. . .
...

γt−1
0 γt−1

1 · · · γt−1
n−1

⎤

⎥⎥⎥⎦ ,

Z = diag
(

1
g(γ0)

,
1

g(γ1)
, . . . ,

1
g(γn−1)

)
.

Here diag (. . .) denotes the diagonal matrix with entries specified in the argu-
ment. H is t × n matrix with entries in the field F2m .

As for any error correcting code, the parity check matrix allows for the com-
putation of the syndrome of a distorted code word:

Sz(Y ) = zH� (Y t−1, · · · , Y, 1
)�

.

http://www.daemonology.net/papers/htt.pdf
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The multiplication with
(
Y t−1, · · · , Y, 1

)� is used to turn the coefficient vector
into a polynomial in F2mt .

The generator of the code is constructed from the parity check matrix in the
following way:

Transform the t×n matrix H over F2m into an mt×n matrix H2 over F2 by
expanding the rows. Then, find an invertible matrix S such that

S ·H2 =
[
Imt | R�] ,

i.e., bring H into a systematic form using the Gauss algorithm. Here, Ix is the
x × x identity matrix. Now take G = [Ik | R] as the public key. G is a k × n
matrix over F2, where k = n − mt.

B The Extended Euclidean Algorithm (XGCD)

The extended Euclidean algorithm can be used to compute the greatest common
divisor (gcd) of two polynomials [17].

In order to compute the gcd of two polynomials r−1(Y ) and r0(Y ) with
deg (r0) (Y ) � deg (r−1(Y )), we make repeated divisions to find the following
sequence of equations:

r−1(Y ) = q1(Y )r0(Y ) + r1(Y ), deg (r1) < deg (r0) ,
r0(Y ) = q2(Y )r1(Y ) + r2(Y ), deg (r2) < deg (r1) ,
. . .
ri−2(Y ) = qi(Y )ri−1(Y ) + rj(Y ), deg (ri) < deg (ri−1) ,
ri−1(Y ) = qi+1(Y )ri(Y )

Then ri(Y ) is the gcd of r−1(Y ) and r0(Y ).

C Experimental Results for the Timing Attack

Here, we show the experimentally determined probabilities (see Section 3.3) for
the respective amounts of correctly guessed error positions.

N = 1 N = 2
Prob (wt (e′ ⊕ e) � 0) 0% 48%
Prob (wt (e′ ⊕ e) � 2) 0% 77%
Prob (wt (e′ ⊕ e) � 4) 0% 96%
Prob (wt (e′ ⊕ e) � 6) 4% 99%
Prob (wt (e′ ⊕ e) � 8) 9% 99%
Prob (wt (e′ ⊕ e) � 10) 16% 100%
Prob (wt (e′ ⊕ e) � 12) 22% 100%
Prob (wt (e′ ⊕ e) � 14) 32% 100%
Prob (wt (e′ ⊕ e) � 16) 46% 100%
Prob (wt (e′ ⊕ e) � 18) 60% 100%
Prob (wt (e′ ⊕ e) � 20) 74% 100%
Prob (wt (e′ ⊕ e) � 22) 83% 100%
Prob (wt (e′ ⊕ e) � 24) 89% 100%
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