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ABSTRACT
Widespread use and low prices of genomic sequencing bring
us into the area of personalized medicine and biostatistics
of large cohorts. As the processed genomic data is highly
sensitive, Privacy-Enhancing Technologies for genomic data
need to be developed. In this work, we present a novel and
flexible mechanism for the private processing of whole ge-
nomic sequences which is flexible enough to support any
query. The basic underlying idea is to store DNA in several
small encrypted blocks, use ORAM mechanisms to access
the desired blocks in an oblivious manner, and finally run
secure two-party protocols to privately compute the desired
functionality on the retrieved encrypted blocks. Our con-
struction keeps all sensitive information hidden and reveals
only the end result to the legitimate party. Our main techni-
cal contribution is the design of a new ORAM that allows for
access rights delegation while not requiring the data owner
to be online to reshuffle the database. We validate the prac-
ticability of our approach through experimental studies.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.4.1 [Computer and Society]:
Public Policy Issues—Privacy ; J.3 [Life and Medical Sci-
ences]: Biology and genetics

Keywords
Oblivious RAM, Secure Computation, Genome Privacy

1. INTRODUCTION
Personalized medicine based on genomic data will result in

a need to store genetic data as part of a patient’s electronic
health record. Furthermore, the great benefits of biostatisti-
cal analysis and large collections of genomic data for public
health will put pressure on a traditional understanding of
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privacy. Technically, the major roadblock for this develop-
ment is already removed: the costs to sequence an individ-
ual’s genome dropped well below $400. Great benefits and
ever sinking costs lead us to expect a sharp increase in the
volume of stored genomic data in the coming years.

Unfortunately, the availability of a large set of genetic data
incurs huge privacy problems; genetic data can arguably be
seen as one of the most sensitive forms of medical data.
Furthermore, our knowledge on the human genome increases
over time; at present, it is impossible to estimate the future
consequences in case a breach of genomic data occurs. Thus,
genomic databases should be protected with strong Privacy-
Enhancing Technologies (PETs) early on.

The most promising approach to protect genomic data is
the use of cryptographic techniques from secure computa-
tion, since they provide strong cryptographic security, both
during storage and processing. In this approach, genomic
data is stored in encrypted form and the evaluation is per-
formed directly on encrypted data. This both protects the
raw genomic data and allows to control the types of queries
that can be performed.

The design of such PETs faces many, synergistically oc-
curring challenges: For one, the entire genome of a patient
requires some 700MB of storage, which results in a huge
overhead when this data is processed “under encryption”.
Additional data of uttermost importance, such as methyla-
tion patterns, require additional space. In contrast to these
demands, current cryptographic methods for secure compu-
tation are tailored towards small and mid-size computational
problems. At the same time, it is at the moment unclear how
genomic data will be used in the future and which queries
will be performed on a genomic database. Currently, the
predominant tests look for single-nucleotide polymorphisms
(SNPs) – which amounts to checking whether a certain sym-
bol occurred in the genome at a given position. It is foresee-
able and desirable that more complex statistical tests will
enter the arena [1, 2, 3]. Any practical PET for genetic
data should thus support any query in order to adapt to
future advances in genetic research. Since a cryptographi-
cally protected sequenced genome will likely be stored only
once during the lifetime of a patient, the form of protection
should not be tailored to a specific query type but should
be as flexible as possible to be able to cope with future
queries. Furthermore association studies where genetic and
physiological data are combined pose a great challenge in
biostatistics and therefore PETs should support these ap-
plications as well. Analysis across several genomes must
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be possible to investigate inheritable traits. Again, autism
is an example, where genomic heterogeneity and so-called
copy-number variation are known to be disease-related [4].
Finally, an ideal PET solution should be able to hide the
type of the query from the involved parties. For example,
if a human genetics laboratory performs a preimplantation
genetic diagnosis for, e.g., autism and the correlated pres-
ence of a specific mutation or combination thereof, the mere
fact that certain parts of the genetic data are accessed in
the parental genomes already leaks privacy-sensitive infor-
mation (namely that an implantation is to occur, who the
parents are, and that they wonder about their own suscepti-
bility for a disease). Ideally, this fact should be hidden from
the (commercial) entity that stores the genomic data.

Related work on DNA protection. All existing solu-
tions have drawbacks in at least one of the above listed as-
pects. Early works focused on processing short DNA frag-
ments and were tailored towards simple queries: for exam-
ple, [5] showed how to run queries in the form of finite
state machines on DNA sequences, and was subsequently
improved in [6, 7, 8, 9]. Unfortunately due to their com-
putational complexity, these approaches are only applicable
to small fragments of DNA strings and not to the entire
genome. Further, they are tailored towards very specific
queries, which can be represented as finite state machines.

Similarly solutions tailored to perform specific forensic
tests efficiently have been proposed as well [10, 11]. Only
a couple of works targeted efficient private queries on fully
sequenced genomes: [12] focused on targeted tests for pater-
nity, personalized medicine applications and genetic com-
patibility; technically, they employ secure set intersection
protocols, which are extremely efficient but only work for
simple queries. Finally, [13] proposed an architecture based
on homomorphic encryption which is flexible with respect
to the query, but leaks the type of test performed to the
involved parties. Still, they lack the capacity to learn and
answer important “fuzzy” (statistical) questions – namely
to act in concert with biostatistics. Note, that all of these
approaches apply to digitally represented and sequenced ge-
nomic data; they can be amended by privacy-preserving ge-
nomic sequencing techniques [14].

Contributions. In this work, we propose a solution that
is flexible to support future query types, is applicable to fully
sequenced genomes and allows to hide the nature of the per-
formed test. To this end, we store the sequenced genome
at a server in encrypted form in a special randomized data
structure that achieves access pattern privacy, called Obliv-
ious RAM (ORAM) [15]. In a subsequent query phase the
stored data can be accessed and utilized in a secure compu-
tation. By separating secure storage from the query phase,
we achieve full flexibility to adapt to future queries. We
achieve efficiency by only requesting as input to the secure
computation phase those parts of the genomic string that are
actually necessary to perform the computation and not the
entire genomic sequence – while hiding the queried positions
themselves. This enables query times that are sublinear in
the length of the genomic sequence. Finally, due to the use
of an ORAM, the party storing the genome is fully oblivi-
ous on the data accessed during a query; he only sees the
amount of data accessed, but not its location in the genome.

In more detail, our construction employs two separate
servers (called cloud and proxy in the sequel) which jointly

operate an ORAM to which encrypted genetic data can be
uploaded. A client can subsequently authorize a different
party, called “investigator” to perform a query on the data
in two steps: In the first step the investigator retrieves the
required encrypted genetic data from the ORAM. We do
this by developing an ORAM which does not require a “data
owner” (such as the patient whose genome was sequenced)
to be constantly online. In the second step the investigator
obtains the result of the computation by running any se-
cure computation protocol between the cloud and the proxy,
which provides the flexibility to perform any genetic test
securely. We also extend the solution to a setting where
the remote server stores data of multiple users in one or
more different ORAMs and allows the investigator to com-
pute on different users’ encrypted data stored on the server’s
database. Finally, we demonstrate the practical feasibility
of the approach by implementing three analysis techniques
operating on (simulated) fully sequenced genomes.

2. BUILDING BLOCKS
Bresson-Catalano-Pointcheval Encryption [16]. For a
security parameter κ, B.Setup(κ) chooses a κ-bit safe-prime
RSA modulus N = pq (i.e. p = 2p′ + 1, q = 2q′ + 1 for two
distinct primes p′, q′) and picks a random element g ∈ Z∗N2

of order pp′qq′, such that gp
′q′ mod N2 = 1 + kN , for

k ∈ [1, N − 1]. The plaintext space is ZN and the algorithm
outputs the public parameters PP = (N, k, g). The key gen-
eration algorithm B.KeyGen(PP) outputs a random element
a ∈ Z∗N2 as secret key and the element h = ga mod N2 as
public key. The encryption algorithm B.Encpk(m) picks a
random pad r ∈ ZN2 and outputs the ciphertext (A,B) =
(gr mod N2, hr(1 + mN) mod N2). The decryption al-
gorithm B.Dec(PP,sk)(A,B) outputs the plaintext as m =

(B/Aa−1 mod N2)/N . The Bresson-Catalano-Pointcheval
(BCP) cryptosystem is semantically secure under the DDH
assumption and is additively homomorphic, i.e.,
B.Dec(PP,sk)(B.Encpk(m) · B.Encpk(m′)) = m+m′.

ElGamal Proxy Re-Encryption [17]. Proxy Reencryp-
tion allows a semi-honest proxy to transform a ciphertext,
generated by a party A with her public key, into an encryp-
tion under the public key of another party B. The proxy
can do so by means of a re-encryption key for B given by
A. Ivan and Dodis [18] showed that ElGamal-like schemes
(such as the BCP scheme) are in fact proxy re-encryption
schemes: Let E = (E .KeyGen, E .Enc, E .Dec) denote the El-
Gamal cryptosystem and let (c1, c2) be an ElGamal cipher-
text with c1 = gr and c2 = mgra of a message m under
the public key ga for some cyclic group generator g, secret
key a, and random exponent r. Consider a “secret sharing”
of the key a = x1 + x2 into two random exponents x1 and
x2. Then, x1 becomes the “re-encryption key” and x2 the
new decryption key: Given an encryption (c1, c2) under the
public key ga, (c1, c2 · c−x11 ) yields an encryption under gx2 .

Bloom Filters [19]. A Bloom Filter is a randomized data
structure that, given a set of elements S = (s1, . . . , sn) and
a query for an element s, returns true with probability 1
if s ∈ S. If s /∈ S it returns false with probability p and
true with probability 1 − p. It is implemented as an array
B of m bits, initialized to the 0-string, together with a total
number of ξ hash functions {hj}ξj=1 : {0, 1}∗ → [m], such
that for every element s ∈ S it holds that B[hj(s)] = 1 for
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all j = 1, . . . , ξ. Testing if an element s is in the Bloom filter
amounts to verifying that B[hj(s)] = 1 for every j = 1 . . . , ξ.

Chaum-van Heijst-Pfitzmann (CvHP) Hash [20].
Given two primes p and q such that p = 2q+1, two elements
α and β, α 6= β of order q and such that the DL problem
in the group 〈α〉 generated by α is difficult, the message
m ∈ Z∗p is“split”intom1 andm2 (m1,m2 ∈ Z∗q) and the hash
function h : Z∗q×Z∗q 7→ Z∗p is computed on m as h(m1,m2) =
αm1βm2 . Collision resistance follows from the DL problem.

Secure Two-Party Computation (STC) using Gar-
bled Circuits [21]. Suppose two parties A and B want
to securely evaluate a certain function on their respective
private inputs. This can be done by letting party A create
a Boolean circuit of this function and assign two random
keys (representing 0 or 1) to each wire of every gate; fur-
ther, A encryps and permutes the gate’s operation table. A
sends the resulting “garbled circuit” to party B, along with
the corresponding keys for A’s input values. Using Oblivi-
ous Transfer to obtain the keys corresponding to B’s input,
and iterating through every gate, B eventually evaluates the
whole circuit on their inputs and obtain the final result. We
refer to [22] for a detailed description as well as a rigorous
security proof assuming passive adversaries. To automati-
cally turn an arbitrary function into an STC protocol, we
will use the compiler of [23]. This compiler takes the descrip-
tion of a function in ANSI C and produces a Boolean circuit,
which can be passed to an STC framework such as [24] to
obliviously compute the desired function.

Oblivious RAM [15]. Suppose a client wants to outsource
her private data to a semi-honest server in an encrypted form
such that she can later on still read and write her encrypted
data blocks, while the server should not learn anything other
than the number of blocks it stores and the total number of
accesses. In particular, the server should not see the access
pattern of the queries (i.e., which element was accessed at
which time). Goldreich and Ostrovsky [15] proposed the
first solution to this problem which considers the encrypted
data blocks, say N in total, along with an equal amount of
“fake” blocks, arranged in a pyramid-like structure of logN
levels. Each level is represented as a hash table, consisting
of a level dependent number of fixed sized buckets, to which
the blocks are assigned. In order to retrieve one block from
the ORAM, the client downloads and decrypts one bucket
from every level, as indicated by the level’s hash table. In
one of those buckets the client is guaranteed to find the block
she was querying for, while for the server the accesses look
totally random. After the client has finished her query, she
writes the block back into the first level’s bucket: If the
query was a read operation, she writes back the block re-
encrypted; in case of a write operation, she writes back an
encryption of the updated block. Once the buckets of a level
are filled, they are emptied to the next level; this process
(called a “reshuffle”) achieves a complete destruction of any
correlation between the blocks accessed on the two levels.

Subsequent works [25, 26] replaced the hash table origi-
nally proposed in [15] with a Bloom filter. In every level
encypted real and fake items are stored. A query for an
element runs in a similar way as before, but instead of look-
ing at the hash table in order to see if an element is on the
level and downloading the corresponding bucket, the client
now consults the corresponding Bloom filter and downloads
either the real element (if it was found on that level) or a

fake one, thus saving an O(logN) communication factor per
query. The reshuffle is also simplified: after two levels are
merged, one only needs to re-randomize the elements and
build a new Bloom filter. This Bloom filter-based construc-
tion will be the starting point for our new ORAM described
in Section 4. We stress that the recent attack by Kushile-
vitz et al. [27] does not apply to such Bloom filter-based
ORAMs as long as the Bloom filter sizes are of adequate
size as proposed by [28].

Today, there is a large body of works on ORAM. Most no-
tably, Stefanov et al. [29] construct a highly efficient ORAM
which constitutes the current state-of-the-art. However, it
maintains a client-side storage (stash) with elements previ-
ously retrieved that cannot fit into the ORAM. This stash
is updated from one access to another. In the multi-client
environment that we look at, this can result in serious in-
formation leakage. Another related work is that of Franz
et al. [30] who extend the standard ORAM to the multi-
client setting by allowing the data owner to delegate access
to her data. This solution cannot directly be applied in our
DNA setting either, as it requires a data owner (such as the
DNA donor) to be online for performing the reshuffle which
is undesirable in our scenario. We strive for a multi-client
ORAM solution that requires no client-side stateful storage
and runs autonomously from the DNA donors.

3. ARCHITECTURE
Our privacy-preserving computation architecture utilizes

three major semi-honest and non-colluding entities, that
communicate over secure channels: a client (e.g., a patient),
an investigator (e.g., a physician), and a DNA storage ser-
vice (e.g., a hospital or biobank). The storage service is con-
sidered as a specialized service which consists of the actual
data store, called the cloud, and a separate non-colluding
proxy that assists in certain computational tasks. Splitting
the databases into two non-colluding servers is a wide-spread
approach in current research, proved to be very promising
(cf. Boneh et al. [31] and Stefanov et al. [32]).

Upon acquisition of genetic data, a client uploads her
DNA in small encrypted blocks to the cloud. Subsequent
access to the data is illustrated in Figure 1. Whenever the
investigator wants to access certain DNA blocks of a client
he first asks the client for authorization (steps 1–2) and re-
trieves the required blocks from the cloud in a private man-
ner (step 3) through a special ORAM protocol. Once all
data is retrieved, the investigator can command the cloud
and the proxy to jointly compute a certain function (e.g.,
a medical test or study) on the retrieved encrypted blocks,
again in a secure and private way (steps 4–5). To do this, the
cloud and the proxy run Yao’s garbled circuit protocol, with
the inputs and circuit created by the investigator. Through-
out these steps, all private data from the client remains en-
crypted and only the result of the computation is revealed
to the investigator (step 6). Neither the cloud nor the proxy
will learn anything about the stored data, including the in-
vestigator’s access patterns (except for the number of blocks
accessed). This architecture can be generalized in a straight-
forward way to tests that operate on multiple genomes: in
the first step, all required encrypted data blocks are fetched
from the cloud given the consent of all involved users. Note
that in such a multi-client setting, DNA data of multiple
clients can be stored in one ORAM database; alternatively
one ORAM can be used per client.
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We implement the client authorization through proxy reen-
cryption: The client sends a secret key to the investigator as
an access token and the reecryption key for the investigator’s
token to the proxy. This way the encryption of the stored
blocks can be transformed to an encryption that is acces-
sible by the investigator. Hiding the access pattern of the
investigator is done through a new ORAM mechanism that
we will explain in Section 4. The challenge here is to design
an ORAM that allows the delegation of accesses while, in
contrast to [30], not requiring clients to be online in order to
perform the ORAM reshuffle. This way, we achieve a com-
pletely autonomous DNA storage service that provides data
confidentiality while hiding the access patterns.

The retrieved DNA blocks are homomorphically encrypted
and subsequently converted to shares, which are given to the
cloud and the proxy, along with a Boolean circuit represen-
tation of the functionality the investigator wants to evaluate.
This transformation allows full flexibility of queries as the
cloud and the proxy can run Yao’s “garbled circuit” for any
desired functionality. This step is detailed in Section 6.

Figure 1: Overview of our architecture.

4. A NOVEL ORAM MECHANISM
We assume that the client’s fully sequenced DNA is stored

encrypted in small blocks of fixed size. Every block is iden-
tified uniquely by a randomly assigned identifier id (details
can be found in Section 7). Typical for an ORAM construc-
tion, fake blocks must also reside in the ORAM and both
real and fake blocks must be encrypted under a rerandomiz-
able encryption scheme so that one is not able to distinguish
whether a real or a fake block has been accessed. Assuming
that the client stores 2N−1 blocks of data, we add another
2N−1 fake blocks. Each fake block contains random data and
is indistinguishable from a real block, when encrypted. To
each fake block we assign a random identifier idfake (mak-
ing sure that there are no collisions between the ids of fake
and real elements). The fake and real blocks are stored en-
crypted on the cloud in an N level pyramid like structure.
Contrary to typical ORAM constructions, in our architec-
ture the encrypted blocks are initially uploaded to the last
pyramidal level (i.e., a level that can hold all initially up-
loaded data). After a block is accessed, it is always placed
on the first pyramid level. If the first level does not have
enough space, then it is recursively emptied to lower ones,
until enough space has been created on the first level.

In the following we describe how blocks in the ORAM are
structured and how the block access works. In order for the
client to find the block he wants, he must first find the level
on which the block currently resides and then the block’s
exact position within that level. Finding the right level is

done with the aid of Bloom Filters: Each pyramid level has
one Bloom filter, whose contents (i.e., the individual filter
bits) are kept encrypted and which is built interactively be-
tween the cloud and the proxy, whenever a level is reshuffled
(see Section 4.2). In contrast to classic Bloom Filters, we
use the CvHP hash function (cf. Section 2) as basis due
to its homomorphic property, which allows to construct an
efficient reshuffle procedure. If an element with identifier
id is present on level l, we set all Bloom filter positions
h(ki, id) = gki3 g

id
4 mod b(l) of level l to one, where ki with

i ∈ {1, . . . , ξ} are used as keys for the CvHP hash function,
created by the proxy during the Bloom filter creation and
stored on the proxy (cf. Table 1). The two generators of the
CvHP are g3 and g4, where g3 is known to the client and the
proxy while g4 is known to the client and the investigator.
Note that the output of the CvHP hash function is further
hashed modulo a publicly known, level dependent function
b(l) so that we can maintain a Bloom filter whose size is
proportional to that of the level.

Once the block has been identified to reside on a specific
level, the investigator must retrieve it from that level. This
needs to be done in a way that does not leak the block iden-
tifier. In particular access patterns need to change upon
every access. Again we use a CvHP hash function, this time
on a “salt” and the block identifier. The salt is computed
as the output of a publicly known hash function K on an
input composed of the level l, a counter r(l) of the reshuf-
fles done at this level and a counter c which is initiated to
a random value chosen by the proxy and subsequently in-
cremented every time a reshuffle is performed at any level
of the ORAM: salt(l, c) = K(l||r(l)||c). The two genera-
tors g1 and g2 of the CvHP hash function are known to
the client and the investigator, while the proxy knows only
g1. Thus the index of a block at a certain level is given as

index(l, id) = g
salt(l,c)
1 gid2 = g

K(l||r(l)||c)
1 gid2 .

Within the ORAM we store the encrypted data block to-
gether with its index. In order to compute the Bloom filter
positions and be able to change the index once one block
was accessed, we also have to store metadata, namely the
elements gid2 and gid4 , encrypted under a rerandomizable en-
cryption scheme. This block represenation will from now on
be called a packet of the block with identifier id on level l;
packet(index(l, id)) = (c1, c2, c3, c4), with

c1 = g
K(r(l)||l||c)
1 gid2 , c2 = E .Encpk(gid2 ),

c3 = E .Encpk(gid4 ), c4 = B.Encppk(data).
(1)

From what will become clear in the following, the elements
c2 and c3 have to be encrypted under a rerandomizable mul-
tiplicatively homomorphic encryption scheme, for which we
choose ElGamal encryption E .Encpk under the public key pk
(the keys for c2 and c3 have to be different but for ease of
presentation, we will not detail this here). For the element
c4 we need a rerandomizable encryption scheme, which has
to be additively homomorphic, a property imposed by the
application scenarios that we examine (cf. Section 6). Thus
we choose the BCP encryption scheme B.Encppk under the
public key ppk.

4.1 ORAM Initialization and Data Upload
Initialization and Upload. Before the client uploads her
encrypted blocks to the cloud, she creates an equal amount
of fake blocks and assigns a unique identifier (avoiding col-
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lisions) to every block (real and fake). She initializes the
secret generators g1, g2, g3, g4 and creates the ElGamal keys
(sk, pk), used for encrypting every packet’s metadata as well
as the BCP keys (ssk, ppk) in order to encrypt the actual
blocks. She also generates another pair of ElGamal keys,
(bfsk, bfpk), with which the Bloom filter contents will be en-
crypted. For every block (real and fake) she then creates
its corresponding packet, see equation (1). The client dis-
tributes the keys and the elements g1, g2, g3, g4 to the parties
as follows: The cloud receives the secret key bfsk, while the
proxy receives g1, g3 and the secret keys sk and ssk (cf. Ta-
ble 1). Observe here that the cloud has the keys to decrypt
the Bloom filter contents but only stores the packets, while
the proxy has the keys to decrypt every packet’s c4 element
(i.e., the encrypted block), but only stores the Bloom Filter.
This is secure as along as the two servers do not collude.

The client then uploads the packets (fake and real) in
random order to the cloud, who stores them on the last level
of the pyramid, while all levels above are initialized and left
empty. Finally she sends the list of the fake ids to the proxy
(the reason for this will become apparent in the detailed
description of the ORAM operations in Section 4.2). Once
the packets have been uploaded, a Bloom filter creation (see
Section 4.2) is initiated between the cloud and the proxy,
resulting in the Bloom filter for the last level, which is stored
in encrypted form on the proxy.

Authorization. At the beginning of a session in which
the investigator wants to read encrypted DNA blocks from
the cloud, he receives from the client the authentication to-
ken. This consists of the group generators g1, g2, g4 and a
temporary secret key tsk. The temporary key is also sent to
the cloud and the proxy and is used so that the investiga-
tor can decrypt Bloom filter bits and the c2 elements of all
packets (only in the current session).

g1 g2 g3 g4 sk tsk bfsk ssk ki

Client • • • • • • • •
Inv. • • • •
Cloud • •
Proxy • • • • • •

Table 1: Overview of the values known to all parties.

4.2 ORAM Operations
Like classical ORAMs, our ORAM supports three opera-

tions, namely read, write and reshuffle. After a read or
write is performed, the investigator puts two packets back
on the top level of the cloud’s pyramid: the real one and a
fake one. In case of a read, the investigator re-randomizes
the elements c2, c3, c4 of the real and the fake packet, while
in case of a write he additionally replaces c4 of the real
packet with an encryption of the new data. Since c4 is a
BCP encryption of the block’s data and a re-randomized ci-
phertext is indistinguishable from a fresh encryption, we can
discuss from here on only the case of a read, knowing that
the same algorithm applies for the case of a write. Note
that, due to this property, neither the proxy nor the cloud
can distinguish a read from a write. Regardless of the op-
eration performed, the packet’s index c1 is also updated, as
described below.

Read Operation. The investigator’s query for a block of
identifier id runs through all the ORAM levels and works
as follows: If the level is empty then there is nothing to
be done. If the level is non-empty then the investigator first
receives the id of a fake packet to be found on that level from
the proxy (step 1). Subsequently he interactively with the
proxy computes the Bloom filter positions corresponding to
the block he is querying for, assuming that it resides on that
level (steps 2 to 4). Using ElGamal proxy re-encryption the
investigator learns if the block is on that level or not (steps 5
and 6) by decrypting the Bloom filter bits. Subsequently he
either retrieves the real block (if it is on that level) or the fake
block (which is certainly there), by computing its index and
requesting the corresponding packet from the cloud (step 7).
In step 8 the investigator makes sure that in case he asked
for a real packet, he has retrieved the correct one. In more
details the steps are described below:

1. The investigator retrieves the idfake for a fake block
guaranteed to reside on level l from the proxy1.

2. The investigator sends gid+v4 to the proxy, for the packet
corresponding to identifier id, that he is interested in,
blinded with a randomly chosen blinding value v.

3. The proxy calculates {gki3 g
id+v
4 }ξi=1 and sends these

values back to the investigator, along with K(r(l)||l||c),
where {ki}ξi=1 are the ξ Bloom filter keys held by him.

4. The investigator unblinds the received values and takes
them modulo b(l), which results in the Bloom filter
positions that he should check. He then requests the
encrypted Bloom filter contents of these positions from
the proxy.

5. The investigator blinds the encrypted Bloom filter con-
tents (each with a different blinding value) and sends
them to the cloud.

6. The cloud (knowing the secret key bfsk for the Bloom
filter bits) performs an ElGamal proxy re-encryption
for the key tsk on the requested Bloom filter bits and
sends them to the investigator.

7. Using the authentication token tsk, the investigator
decrypts and unblinds the Bloom filter bits, thus learn-
ing if the desired block with identifier id is on the level.
If the block was already found on a previous level or
the block is not on that level, then the investigator
computes the index of the fake packet and requests
from the cloud the packet(index(l, idfake)). Otherwise
he computes the index of the desired block id and re-
quests from the cloud the packet(index(l, id)), whose
element c2, the cloud proxy re-encrypts for the key tsk
and sends to the investigator.

8. If the investigator asked for a real packet, then using
his authentication token, he decrypts the element c2
of the packet and compares it to gid2 . If they are not
the same, then a false positive has occured within the
Bloom filter, meaning that the packet retrieved was
not the real one. Then the investigator continues as if
he had found a fake element during this query.

1Note here that the proxy knows only the fake ids on the
levels, but does not see if the investigator retrieved a fake or
a real packet.
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After the investigator has received the packet he was ask-
ing for, he generates a fake packet by computing the ele-
ments c2, c3, c4 for the fake id retrieved from the last ORAM
level. He then rerandomizes the elements c2, c3, c4 of the real
packet he retrieved and sends the fake id (idfake) he got from
the last level to the proxy. The proxy stores idfake on the
list of fake ids that are available on the first level and marks
all the fake ids that he gave throughout the query as “used”,
so that they are not re-used in subsequent queries. Finally
the investigator sends the real and the fake packet in ran-
dom order to the cloud. The cloud creates the indices for
the two packets with the help of the proxy in the following
way: If the cloud does not have enough space to hold the
two elements in the first level, then a reshuffle is triggered,
during which the freshly added elements and the ones that
were already in the first level are shuffled, merged with the
first level and their indices are updated. Otherwise if there
is enough space for the two elements to be stored in the
cloud’s first level, the two packets to be added are consid-
ered as a “level 0” and are reshuffled with the elements of
the first level. Thus the indices of the two packets are gen-
erated, their order is randomly permuted and a new Bloom
filter for level 1 is created. Details are given below:

Reshuffle. Once a level is entirely filled with packets, it is
emptied recursively to the next one, until a level is reached,
which does not overflow after its previous level is emptied
into it. In order to maintain pattern obliviousness, the el-
ements have to be obliviously reshuffled while they are en-
tered into the new level. The reshuffle consists of two
distinct phases: First, a Bloom filter creation phase, where
the Bloom filter for the new level is created and then an
update phase during which the packets of the two levels are
merged, leaving the smaller of the levels empty. In details
reshuffling levels l − 1 and l works as follows:

Phase 1: Bloom Filter Creation. In the first reshuffle
phase the current Bloom filters of levels l − 1 and l are de-
stroyed and a new Bloom filter for level l is created. The
operation is interactively performed between the proxy and
the cloud, who compute the positions of the Bloom filter
that need to be set to one, without being able to identify
the blocks in the two levels. In more detail the steps per-
formed are as follows:

1. The current Bloom filters and the keys {ki}ξi=1 of levels
l − 1 and l are discarded and new keys for level l are
selected by the proxy.

2. The proxy marks the ids of all the fake elements from
level l− 1 as “not used” and merges them with the list
of fake ids maintained for level l.

3. The cloud creates a list that contains all the packets
from levels l− 1 and l. Furthermore, he creates a tem-
porary pair of random ElGamal keys (sk′, pk′), which
will be discarded at the end of this phase. For every
packet (c1, c2, c3, c4) present on the list, the cloud uses
the proxy re-encryption property of ElGamal to trans-
form c3 = E .Encpk(gid4 ) into an encryption under the
public key pk · pk′. This is done by using −sk′ as the
re-encryption key so that sk+sk′ is the new decryption
key. The cloud sends the resulting encrypted metadata
E .Encpk·pk′(gid4 ) and the key pk′ to the proxy.

4. For every packet to be inserted in level l, the proxy
computes the ξ Bloom filter positions that will have

to be set to one. He does this by first multiplying the
element E .Encpk·pk′(gid4 ) with E .Encpk·pk′(gki3 ) for i =
1 . . . ξ. Then he uses the proxy re-encryption property
to transform the encryption into an encryption under
the public key pk′. This is done by using sk as the re-
encryption key. He sends the resulting list of elements
E .Encpk′(gki3 gid4 ) back to the cloud.

5. The cloud initializes a Bloom filter of size b(l) with all
values set to E .Encbfpk(0). For every element of the
received list, the cloud decrypts the elements received
in the previous step (since now this is only encrypted
under the public key pk′) and sets the Bloom filter

positions gki3 g
id
4 mod b(l) to E .Encbfpk(1).

6. The cloud sends the resulting encrypted Bloom Filter
to the proxy and discards the key pair (sk′, pk′).

Phase 2: Update. In this second phase the packets of levels
l − 1 and l are merged into level l, re-randomized and ran-
domly permuted. The global counter c and the level’s reshuf-
fle counter are updated on the proxy side and the packets’
new indices are computed. In detail, this is done as follows:

1. All packets currently stored on level l − 1 are moved
to level l.

2. The cloud creates a new pair of temporary random
ElGamal keys (sk′, pk′) and a pair of random BCP
keys (ssk′, ppk′). For every packet (c1, c2, c3, c4) stored
on this new level, he first removes c1 and transforms
the parts (c2, c3) into encryptions under the public key
pk · pk′ by using −sk′ as the re-encryption key. Fur-
ther, he transforms c4 into an encryption under the
public key ppk · ppk′. He sends the transformed parts
(c2, c3, c4) of each packet to the server, along with the
public keys pk′ and ppk′.

3. The proxy increases the counters c and r(l) and com-
putes the level’s salt K(r(l)||l||c). For each received
element, he then multiplies the packet’s c2 part by

E .Encpk·pk′(gK(r(l)||l||c)
1 ). This results in the new cor-

rect index c1, but now encrypted under pk · pk′. The
proxy then removes the dependency on the pk from
these encrypted indices by using sk as the re-encryption
key. Finally, he randomly permutes and re-randomizes
all obtained elements (c1, c2, c3, c4) and sends them
back to the cloud.

4. The cloud first decrypts the index c1 of every received
packet using the secret key sk′. He then removes the
dependency on pk′ from the parts (c2, c3) and the de-
pendency on ppk′ from part c4 of all packets by using
sk′ and ssk′, respectively, as the re-encryption keys.
The result of this process is a randomly permuted list
of packets with fresh indices, where (c2, c3) are en-
crypted metadata under pk and c4 is the actual en-
crypted block under ppk.

Note that since after each access, the investigator puts back
on the ORAM’s top level a fake and a real packet, duplicate
real packets will occur. However this does not affect the
correctness of the protocol, since the most recently updated
duplicate will be found on a higher ORAM level. Similar-
ily the security of the protocol is not affected since every
duplicate is indistinguishable from any other packet.
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5. SECURITY ANALYSIS
In this section we analyze the security of the ORAM con-

struction proposed in Section 4. We start by proving that
the architecture is correct: for every block request, our con-
struction returns the correct block back to the investigator.
Then we show that our construction is secure, meaning that
the access patterns remain hidden from the ORAM server
(the cloud) and the proxy, while the investigator learns only
the encrypted block. For the proofs of the propositions pre-
sented here, we refer to the paper’s full version.

In our security analysis we assume that all the parties are
semi-honest (i.e., they read and try to extract information
from the messages they exchanged throughout the protocol,
but do not tamper with the messages) and non-colluding.
Clearly the non-collusion assumption cannot be lifted, since
any collaboration between the proxy (who has the keys for
the encrypted blocks) and the cloud would immediately ren-
der the protocol insecure.

Proposition 5.1. The ORAM protocol described in Sec-
tion 4 is correct, i.e. for every query, the ORAM server
(cloud) returns only the correct (queried) block except with
negligible probability.

Before we can prove our protocol secure we must formally
define the notion of an access pattern and what it means for
a participating member of the protocol to be oblivious. We
do this with the help of the following definitions.

Definition 1 (View). For a member P participating
in our ORAM protocol we call the transcript of the protocol
for an operation R, that P sees, with R being a read, a
write or a reshuffle, the view V P(R) of the participant
P on operation R.

Note that the transcript includes all messages that a par-
ticipating member of our protocol sees during an execution
of the protocol. This includes not only the messages that
this party sends and receives, but also all the data that this
party stores and has stored during previous executions of
the protocol. Under this light we can now introduce the
following definition:

Definition 2 (Access Pattern). Suppose that a se-

quence of operations ~R = (R1,R2, . . . ,Rk), is issued by a

party P. We call the tuple AP( ~R) = (V P(R1), V P(R2), . . . ,

V P(Rk)), the access pattern of P for the operations ~R.

Definition 3 (Oblivious Party). We call a partici-
pating member P of our ORAM protocol oblivious, if any
two access patterns AP( ~X ) and AP(~Y) of the same length
starting from the same configuration of the ORAM, are com-
putationally indistinguishable.

Proposition 5.2. The ORAM protocol described in Sec-
tion 4 is secure (in the random oracle model), i.e. the cloud
and the proxy are oblivious parties.

6. DATA ANALYSIS
General Framework. Recall that in our scenario we as-
sume that a client uploaded her fully sequenced encrypted
DNA in blocks of fixed size to the cloud. She then allows

a third party (such as a medical facility or a private physi-
cian), here called an investigator, to access some of these
blocks. Suppose then that the investigator wants to per-
form a certain query on DNA strings for single or multiple
clients. He first retrieves all blocks on which the query de-
pends using the methods from the previous section, thus
hiding the access pattern. These retrieved blocks are taken
as input for secure two-party computation that is run be-
tween the cloud and the proxy. For simplicity, we follow
the garbled circuit-based approach, but a strategy based on
homomorphic encryption could be employed as well.

Let {B.Encppk(datai)}ki=1 be the blocks that the investiga-
tor retrieved from the cloud during the first step. In order to
evaluate a specific functionality f on these blocks, the inves-
tigator first converts the encryption into shares as follows:
he blinds the retrieved encrypted data with a random value
and sends it to the proxy, while the blinding values are sent
to the cloud. The proxy now decrypts the obtained blocks
and is left with blinded versions of the required data items.
Since the cloud has the blindings, this means that the proxy
and the cloud have a secret sharing of the data contained in
the blocks. Subsequently the investigator creates the circuit
corresponding to the functionality f he wants to compute
(which needs to include the necessary data unblinding step)
and sends it to the proxy who performs the circuit garbling.
Therefore the cloud and the proxy can now evaluate the de-
sired function on the secret shared blocks together using any
garbled circuit framework. Finally, the result of the compu-
tation is returned to the investigator.

We illustrate this general procedure with three specific
queries, often performed in the area of genetic analysis.

Pattern Matching in SNPs. In our architecture it is
straightforward to search for a specific mutation in a block
of sequenced DNA; this conforms to the present practice of
finding markers via the SNPs discussed earlier in the intro-
duction. Here, the investigator first retrieves the encrypted
block that contains the SNP that is to be analyzed. Subse-
quently he runs a simple comparison protocol that compares
the SNP part of the block to the desired mutation. Tech-
nically, the circuit for this operation needs to unblind the
retrieved block, extract some nucleotides and perform the
comparison operation. We used the compiler from [23] and
representing each nucleotide by two bits in a DNA block, we
produced the corresponding circuit, which consists of 20, 490
gates. Using a framework like [33], which evaluates a gate
per 7.25 nsec, this circuit can be evaluated in 1µs.

DNA Fingerprints in Forensics. Usage of genomic data
in criminal forensics has become a wide-spread tool [34]. It is
based on the identification of short tandem repeats (STRs)
which are highly polymorphic regions of short repeated se-
quences of DNA – each around four nucleotides long. Typ-
ically, investigators focus on several loci2 in the genome,
looking for several STRs. Then, the number of repeated
copies is extracted and used as a “description vector” for an
individual or a probe found at a crime scene. We stress that
there is conclusive evidence that STRs reveal information
about family members and kinship [35].

Note that this procedure is related but substantially dif-
ferent from the above SNP pattern matching for two reasons:
the output is a vector of integers representing the amount

2For instance, the US Combined DNA Index System
(CODIS) maintained by the FBI uses 13 such loci.
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of copies of individual STRs and the loci are not necessarily
in vicinity but scattered through the entire genome.

Initializing the parameters of our system as will be dis-
cussed in Section 7 and thus storing 128 character long
DNA blocks, we implemented the above approach using [23].
The resulting circuit that outputs the “description vector” is
of size 1, 697, 280 gates, which again using the framework
from [33] can be evaluated in roughly 1 second.

Statistical Queries. Our framework also supports com-
putation tasks on data coming from multiple patients: As-
sume that n clients have their fully sequenced, encrypted
DNA stored on the cloud (each in an individual ORAM)
for example along with an encrypted table for each client,
containing information on whether the client suffers from a
certain disease or not. The investigator now wants to eval-
uate the probability that specific DNA mutation patterns –
potentially distributed throughout the entire genome – are
associated with this disease.

To this end, one can perform a statistical analysis: Con-
sider the events A ∈ {0, 1} stating that the patient suffers
(A = 1) or does not suffer (A = 0) from a particular dis-
ease, and Bpi ∈ {0, 1} stating that a distinctive pattern p
occurs in DNA block indexed by i. Note, that p and i do
not necessarily contain all possible and thus combinatorially
many patterns of nucleotides or DNA fragments, but rather
a small and well understood subset.

A biostatistician, as the investigator, knows the disease
classifications A and wants to train a statistical model for
future prediction of disease prevalence. He can thus compute
the prior probabilities Prob(Bpi |A) for a given set of stored
genomes – taken as a training set. Furthermore, he can com-
pute the prior probability distribution Prob(A) on the preva-
lence of the disease in the sample. Using our architecture he
can obtain all probabilities Prob(Bpi ) for Bpi ∈ {0, 1} – with-
out revealing the individual genomes. Now, using Bayesian
estimation, a medical practitioner who was provided with
the biostatistician’s model can diagnose a patient by com-

puting the probability Prob(A|Bpi ) =
Prob(B

p
i |A)·Prob(A)

Prob(B
p
i )

given

a genome of a patient. Note, that updates on the model
can be performed as well: whenever new genomes enter the
pool of genomic data in the cloud (preferably many), the
biostatistician can use Bayesian updating to accommodate
the new data and modify the effective model Prob(A|Bpi ).

In order to estimate the complexity of this approach, we
implemented the computation of the above-mentioned prob-
abilities on 1, 000 retrieved encrypted DNA data blocks us-
ing fixed point arithmetic with 10 bit precision. The re-
sulting circuit consists of 21, 989 gates for one block, out of
which 21, 590 gates were used to perform the unblinding of
the 2, 048 bit long blinded block. Since the circuit creation
scales linearly, the resulting circuit for 1, 000 DNA blocks
has a size of about 21 million gates, which can be evaluated
in 1.2 seconds using the framework from [33]. Note that this
number amounts for the time required to perform computa-
tions on the retrieved blocks; timings for the data retrieval
part are given in the next section.

7. EXPERIMENTAL RESULTS
We experimentally evaluate the performance of out ORAM

construction, initiated with a fully sequenced genome.

Parameters. We follow the recommendations suggested
by EcryptII [36], which are slightly more conservative than

those of NIST. Thus we choose for the ElGamal group a safe
prime p = 2 ·q ·r+1 of length 1, 024 bits with q and r primes
and set the discrete logarithm key of size q, to 160 bits. In
order then for the CvHP hash function to be compatible
with the ElGamal encryption we choose the element α (as
mentioned in Section 2) to be a generator of the subgroup Zq
and the generator β to be a multiple of α. The block ids are
drawn uniformly and at random from Z∗q making sure that
every block (fake and real) is assigned a different id. We
choose the BCP keys to be of size 4, 096 bits, thus having
the underlying prime factors of size 1, 024 bits. Regarding
our Bloom filters and in order to minimize the disk seeks
during the queries, we set the number of Bloom filter keys
to 5, randomly chosen from Z∗q . The Bloom filter for every
level is of size chosen using the results from [28] so that the
security concerns raised from [27] can be mitigated and the
false positive ratio of the Bloom filter3 is smaller than 2−12.

Experimental Setup. We simulated our mechanism on
an IBM System x3550 M3 server equipped with 32GB of
RAM and two Intel Xeon X5650 2.67GHz processors run-
ning Ubuntu Server 11.10. Our system was implemented
in C++ and compiled using g++ from the GNU Compiler
Collection version 4.6.1. For the cryptographic operations,
we used the Crypto++ library in version 5.6.1. We used
MySQL version 5.1.69 as a storage backend.

Results. A full human genome can be encoded using ap-
proximately 3 billion characters. Needing only two bits to
encode a nucleotide, storing the entire genome would need
approximately 232 bits. The BCP parameters described
above support plaintext blocks of size at most 2, 048 bits,
meaning that we could store a fully sequenced human genome
in less than 225 = 33, 554, 432 blocks of 128 characters each.
We simulated the client’s DNA, by storing random numbers
to represent the various DNA blocks. We note that our im-
plementation does not initially put a Bloom filter into the
last level N . Since all elements (potentially old versions)
reside there anyway due to the ORAM’s initialization, a
Bloom filter is only needed after 2N queries when a reshuf-
fle of the last level is performed which automatically creates
the Bloom filter (see the paper’s full version for details).

Our system’s bottleneck is its initialization: Populating
databases of various sizes scales linearly: a 217 = 131, 072
blocks database needed approximately 2 hours and 36 min-
utes, a 224 = 16, 777, 216 blocks database needed approxi-
mately 7 days and the one holding all 225 real blocks (repre-
senting a fully sequenced genome) needed approximately 14
days to be populated. Nevertheless, as this is an operation
performed once during a client’s lifetime, these durations
seem justified.

We set up two databases of different size in order to test
the block retrieval efficiency: a database that contains 217

blocks and the large database containing 225 blocks. We
performed 10 rounds of 2, 100 queries in both databases. In
the upper graph of Figure 2, we show the average timings
for the 10 rounds of queries on the large database: We see
that the majority of queries run in less than 100 seconds.
Note that this scenario resembles the case of storing a full
genome. The peaks in this graph occur whenever a reshuffle
is performed. Observe however the periodicity of the data:

3Note here that the probability of a false positive does not
affect the correct retrieval of a block, as pointed out in Sec-
tions 4.2 and 5
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The time needed for a reshuffle of a higher level amounts to
twice that of the previous level. However since the elapsed
time between two reshuffles increases exponentially, a low
amortized time of approximately 12.39 seconds per query is
achieved. In the lower graph of Figure 2 we compare the
average time needed for 10 repetitions of the 2, 100 queries
in the two databases. From the results we see that the query
time is roughly independent of the size of the database and
depends only on the number of the queries performed so far.
This is expected, as at any given time, not all the ORAM
levels are full.
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Figure 2: Average time of 2, 100 queries on a
database with 225 real packets (top); average time
for 2, 100 queries on the the two databases holding
217 and 225 real packets respectively (bottom).

To measure the traffic exchanged between the parties we
performed 2, 100 queries locally on the loopback interface
using iptables for traffic accounting, thus the numbers also
include all TCP and IPv4 headers and not just the applica-
tion layer payload. The top graph of Figure 3 depicts the
summed traffic between the cloud and the proxy, showing
certain “jumps”. These occur whenever a reshuffle is per-
formed and as in the time measurement results, each jump’s
height is twice that of the previous one, with an exponential
amount of queries being performed from one jump to the
next. The cloud’s communication overhead is due to send-
ing of the Bloom filter in step 6 of the Bloom filter creation
phase. During the 2, 048th query, the proxy sends 318MB to
the cloud with an average of only 1.202MB transferred per
query between the proxy and the cloud. The lower graph
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Figure 3: Traffic exchanged between cloud and
proxy (top) and cloud, proxy and investigator (bot-
tom) in 2, 100 queries.

of Figure 3 shows the traffic between the investigator and
the other parties, with an average of 133KB per query. Note
that the traffic is only affected by the number of queries per-
formed and not by the number of items in the database. Our
results show that the investigator is almost not burdened by
the query, as required by the problem domain.

8. CONCLUSION
In this paper we presented a solution which synergistically

combines ORAM techniques with secure two-party compu-
tation solutions in order to offer privacy preserving compu-
tations on outsourced, fully sequenced DNA providing full
query flexibility. Our starting point was storing the fully
sequenced DNA in small blocks and outsource it to a re-
mote server, hiding at the same time the access patterns.
Our main building block was a new ORAM construction
that allows the data owner to be offline even when a reshuf-
fle is performed. Using secure computation on the retrieved
DNA blocks, the computation can be performed in an oblivi-
ous manner. Decoupling the data retrieval and computation
process, we obtain full flexibility to adapt to future queries.
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