
FPGA Implementation of an Improved Attack
Against the DECT Standard Cipher

Michael Weiner, Erik Tews, Benedikt Heinz, Johann Heyszl
<michaelweiner@mytum.de>, <e tews@cdc.informatik.tu-darmstadt.de>,

<benedikt.heinz@sit.fraunhofer.de>,

<johann.heyszl@sit.fraunhofer.de>

Fraunhofer Institute for Secure Information Technology, Munich, Germany
TU Darmstadt, Germany

Abstract. The DECT Standard Cipher (DSC) is a proprietary stream
cipher used for enciphering payload of DECT transmissions such as cord-
less telephone calls. The algorithm was kept secret, but a team of cryp-
tologists reverse-engineered it and published a way to reduce the key
space when enough known keystreams are available [4]. The attack con-
sists of two phases: At first, the keystreams are analyzed to build up an
underdetermined linear equation system. In the second phase, a brute-
force attack is performed where the equation system limits the number
of potentially valid keys. In this paper, we present an improved variant
of the first phase of the attack as well as an optimized FPGA imple-
mentation of the second phase, which can be used with our improved
variant or with the original attack. Our improvement to the first phase
of the attack is able to more than double the success probability of the
attack, depending of the number of available keystreams. Our FPGA
implementation of the second phase of the attack is currently the most
cost-efficient way to execute the second phase of the attack.

Keywords: DECT, DECT Standard Cipher, DSC, Stream Cipher, FPGA,
Hardware-Accelerated Cryptanalysis.

1 Introduction

Digital Enhanced Cordless Telecommunications (DECT) is a standard for short
range cordless communication. DECT is mostly used for phones, however other
applications like wireless payment terminals, traffic control and room monitor-
ing are possible. With more than 800 million DECT devices sold1, it is one of
the most commonly used systems for cordless phones besides GSM, UMTS and
CDMA. The DECT standard provides mutual authentication of devices and en-
cryption of the payload, however both features are optional and need not be
implemented on a device. DECT uses the DECT Standard Authentication Al-
gorithm (DSAA) for authentication and key exchange and the DECT Standard
Cipher (DSC) for encryption.

1 http://www.etsi.org/WebSite/NewsandEvents/201004 CATIQ.aspx

2 Authors Suppressed Due to Excessive Length

First attacks on DECT [2, 3] showed that some devices do not use encryption
and authentication at all and can easily be eavesdropped on. Even if encryption
is used and long-term and session keys are generated in a secure manner, it
is still possible to decipher phone calls. In 2009, the DECT Standard Cipher
was reverse-engineered and a correlation attack on the cipher was published [4]
by Nohl, Tews and Weinmann (NTW-attack). With 215 available keystreams
generated with different initialization vectors (IVs), it is possible to recover the
session key within minutes to hours on a fast PC or Server. Different tradeoffs
are possible. This allows decryption of the call recorded, but does not reveal the
long-term keys or keys for the previous or next call.

In this paper, we present an optimized NTW-attack, which reduces the time
to recover the key or the number of keystreams required. The optimizations are of
general nature and can be used in conjunction with optimized implementations
of the attack for CUDA graphics cards or the PS3 cell processor [4] or any other
kind of parallel processing hardware. In the second part of the paper we present
an optimized FPGA implementation of our optimized NTW-attack, which is
currently the most cost-efficient way of searching through the remaining key
space the NTW-attack determines.

In Section 2 we describe the attack scenario and point out where our work
can be applied. In Section 3, we give an introduction to DSC and the original
attack on DSC developed by Nohl, Tews, and Weinmann. Knowledge of the
structure of the original attack is essential to understand our improvements. In
Section 4, we present our improvements of the first phase of the NTW attack.
In a nutshell we introduce a key ranking method making the correct key more
likely to be found earlier in the second phase of the attack. In Section 5 we
present an FPGA implementation which can be used in conjunction with our
improvements from Section 4 to execute the second phase of the attack in the
most cost-efficient way currently known. Section 6 concludes our work.

2 Attack Scenario

In this paper, we show that an attacker who is able to eavesdrop on DECT
communication can decrypt the encrypted payload faster and more efficiently
than previously known. In contrast to some other attack scenarios [2], our attack
is passive, i.e. no data needs to be sent by an attacker. Therefore, a victim is not
able to detect the presence of an attacker.

At first, the attacker needs to record the raw DECT data being sent over the
wireless interface. He can do so, for example, by using a DECT PC-Card using
a modified firmware 2 or a generic software radio like USRP3.

Using the recorded data, the attacker has several options depending on the
type of communication and the security services being applied. If the attacker is
able to listen to the pairing process between the base station and the handset,
he needs at most 104 ≈ 213.3 tries to recover the resulting long-term key (UAK).

2 https://dedected.org/trac/attachment/wiki/25C3/talk-25c3.pdf
3 http://www.ettus.com/

Title Suppressed Due to Excessive Length 3

Further decryption is trivial as all other keys are derived from the UAK. However,
regular pairing only takes place once when a handset is being installed to a
base station and only if the handset is not pre-paired to the station by the
manufacturer.

Therefore, we assume that an attacker is only able to eavesdrop on a regular
DECT call. In this case, if encryption is enabled, he can either attack the key
derivation scheme of DSAA [2, 3] that generates the session keys, or he can attack
the payload encryption algorithm DSC. Attacking DSAA is especially suitable
if the attacked devices have a weak PRNG.

When attacking DSC, the attacker must be able to extract valid DSC key-
streams from the recorded data. This is possible because some messages can be
predicted – for example, the call duration counter is implemented on the base
station for several DECT phones, and the counter value is sent to the handset
once per second using a control message. An attacker can predict messages of
that type when he knows the start time of the call.

An attack against DSC requires a relatively large number of known keystreams
for a reasonable success probability. In this paper, we introduce two means to
increase the performance of a DSC attack, which can be applied independent
from each other: On the one hand, we provide an algorithmic improvement, and
on the other hand, we provide a very efficient implementation on an FPGA.

3 Cryptanalysis of the DECT Standard Cipher

The DECT Standard Cipher is a proprietary stream cipher designed for DECT.
It takes a 64 bit key and a 35 bit initialization vector (IV) and generates a
keystream of variable length. DECT supports frames of different lengths and
formats. For common voice calls, a keystream of 720 bits is generated and split
into two keystream segments. The first 360 bits of the output of DSC are used
to encrypt traffic from the base station (Fixed Part, FP) to the phone (Portable
Part, PP). The first 40 bits can be used to encrypt control traffic (C-channel
traffic). If a frame contains no C-channel data, the first 40 bits are discarded.
The remaining 320 bits are used to encrypt the actual voice data (B-field). The
second part of the keystream is used to encrypt frames sent from the PP to the
FP. Again, the first 40 bits are used to encrypt C-channel traffic if present. The
remaining 320 bits are used to encrypt the voice data.

The internal design of DSC consists of 4 linear feedback shift registers R1,
R2, R3, and R4 of length 17, 19, 21, and 23 bits. Three of them are irregularly
clocked, the last one with a length of 23 bits is regularly clocked. A non-linear
output combiner is used to generate the output using six bits from the three
irregularly clocked registers. Initially, the 35 bit IV is zero-extended to 64 bit
and prepended to the 64 bit cipher key resulting in an 128 bit input to the
cipher. The input is then clocked into the most significant bit of each register
using regular clocking. After the key loading, every bit of every register is just
a linear combination of key and IV bits. After key loading, 40 blank rounds are
performed using irregular clocking.

4 Authors Suppressed Due to Excessive Length

To attack DSC, Nohl, Tews, and Weinmann used the following approach:
If DSC would be regularly clocked, one could easily recover the secret key. Of
course DSC is not regularly clocked, but the probability that register R1 has
been clocked i times, R2 has been clocked j times, and R3 has been clocked k
times when the lth bit of output is produced is:

pi,j,k,l =

(
40 + l

i− (80 + 2l)

)(
40 + l

j − (80 + 2l)

)(
40 + l

k − (80 + 2l)

)
2−(40+l)3

Let s = x
(i)
1,0, x

(i)
1,1, x

(j)
2,0, x

(j)
2,1, x

(k)
3,0, x

(k)
3,1 be the six bits of registers R1, R2, and

R3, which contributes to the keystream generated by DSC at this moment. To

eliminate some variables we may write x
(i+1)
1,0 instead of x

(i)
1,1 because the bit is

simply shifted with the next clock. x
(j+1)
2,0 = x

(j)
2,1 and x

(k+1)
3,0 = x

(k)
3,1 also holds.

Let zl be the bit of output produced by DSC and zl−1 be the previous bit of
output which is now stored in the memory bit of the output combiner. Because
s is just a linear combination of key and IV bits, we may split it into a key and
IV part s = skey + siv. The linear combination of the IV part siv is known by

the attacker for every keystream and the recovery of skey would reveal 6 bit of

information about the secret key. If O(s, zl−1) = zl holds for a value of s, it
can bee seen as an indication that skey = s + siv for a higher probability than

guessing (1
64).

To execute the attack, a clocking interval C = [102, 137] of length 35 was
chosen. This leads to 353 = 42875 possible combinations for the number of clocks
i, j, k for the registers R1, R2, and R3 which reveal information about the state

variables x
(102)
{1,2,3},0 . . . x

(138)
{1,2,3},0. For every choice i, j, k of clocking combinations

in this interval a frequency table for the 26 = 64 choices for the key-part key of
s is used. For every consecutive pair of bits zl, zl−1 from the keystream where
the clocking combination has a none negligible probability and for every choice
of s,

p =
∑
l

pi,j,k,l ∗ [O(s, zl−1) = zl] +
1

2

(
1−

∑
l

pi,j,k,l

)
is computed and ln p

1−p is added to the frequency table entry skey = s + siv.

Instead of representing the equations in the frequency table directly as linear
combinations of key-bits, a short form is used where all equations have the

form x
(·)
{1,2,3},0 = {0, 1}. Every entry in the frequency table contains six of those

equations.
After all keystreams have been analyzed, we take every variable v and exam-

ine all frequency tables which contain equations of the form v = bi, bi ∈ {0, 1}.
We take the top-voted entry from these tables and compute pv =

∑
i(2bi−1)∗pi

where pi is the number of votes for the top voted entry in the table. If pv is neg-
ative, we assume that v = 0 holds, 1 otherwise.

In total there are 36 ∗ 3 = 108 different equations. All of them are sorted
according to |pv|. The original attack suggests using the topmost equations (for
example 30 equations) to build an equation system of the form Ak = b for the key

Title Suppressed Due to Excessive Length 5

k. All possible solutions of the system (using 30 equations leads to 264−30 = 234

possible solutions) are then checked against some reference keystreams to check
if one of them generates the reference keystream. If so, it can be assumed that
this solution is in fact the correct key for the cipher.

4 Key Ranking

To improve the original NTW attack, we introduce a key ranking procedure. The
original NTW attack generates equations of the form

∑
i aiki = {0, 1} where ki is

a bit of the key and ai is either 0 or 1. The left part of the equation only depends
on the feedback polynomials of the registers. The right part of the equation is
either 0 or 1, determined by a voting system. The difference between the number
of votes for 0 and 1 is denoted by |pv|. In the original attack, the equations are
sorted by |pv| and the topmost equations are assumed to be correct. Using many
equations results only in a small remaining key space which needs to be searched,
but increases the probability that at least one equation is incorrect and the key
is not found in the set of solutions of the linear equation system.

To improve the attack, we first checked, with which probability the individual
equations are correct. We ran 100 experiments against randomly chosen keys and
counted in how many times the first, second, third... equation in A was correct.
The results are shown in figure 1. The first 10 equations in A (see Section 3) are
correct with a probability of at least 99%. This makes it highly unlikely that one
of the first 10 equations is incorrect. Starting from equation 30, the probability
that the equation is correct drops down to 70-60% for equation 55. This makes
these equations only of minor use for the attack and one can assume that at
least one of these equations is incorrect with high certainty.

We decided to look for a strategy to generate highly likely sub key spaces
in an order, so that the key spaces which are most likely to contain the correct
key are generated first. The key spaces should still be described by a linear
equation system and should contain many (at least 226 or more) keys, so that
high parallel implementations which can search through such a key space as
developed for the original attack can still be used, communication overhead is
minimized and pipeline stalls due to too small key spaces are avoided. As a
result, at most 36 equations from matrix A should be used.

For the original NTW attack, it is never necessary to compute the success
probability of an equation explicitly. Instead, one can just sort all equations
by |pv|, assuming that equations with a higher difference have a higher success
probability. We decided to compute the explicit probability for an equation from
|pv|. First, one can simulate the attack against 100 random keys (using the same
number of keystreams) and collect all generated equations with their voting
difference and correctness. It is now possible to compute the success probability
P (|pv|) of an equation using this data and a nearest neighbor smoother or similar
methods (e.g. kernel smoother). We used a k-nearest-neighbor smoother for this
paper.

6 Authors Suppressed Due to Excessive Length

Fig. 1. Success probabilities of the individual equations in matrix A

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

p
ro

b
a
b
ili

ty
 t
h
a
t
e
q
u
a
ti
o
n
 i
s
 c

o
rr

e
c
t
*

1
0
0

n’th equation in matrix A

32768 keystreams
49152 keystreams

We did not decide to compute the success probability for an equation from
the line number in the matrix A and the number of keystreams. If a systematic
problem in the keystream recovery method used would exist, this could decrease
the success probability of some equations. Using |pv| for computing the success
probability of each equation seems to be more appropriate.

We can formulate our key ranking approach as a best-first-search over a
directed graph: Assuming that we have a set of equations ei with respective
individual success probabilities P (|pxi

|) and that the success probabilities are
independent, we can run a best-first-search for the correct key (if we use 64
equations) or for the most promising sub key space (if less than 64 equations are
used). We assume that the set of possible keys or sub key spaces is a directed
graph G = (V,E). A node v consists of a vector c that indicates which equation
ei is correct (ci = 0) and which of the equations is incorrect (ci = 1). The prob-
ability that this node represents the correct sub key space is

∏
i (|ci − P (|pxi

|)|).
The node with the highest probability is the node with c = (0, . . . , 0) where all
equations are assumed to be correct. An edge (v1, v2) exists if v1 and v2 differ
only in a single equation, which is assumed to be correct in v1 but assumed to
be incorrect in v2.

We can now run a best-first search for the correct sub key space on this
graph starting at the node with the highest success probability. Using 64 equa-
tions would guarantee that all keys are visited in the exact order of probability,
however we think that the number of equations should be limited so that not
too much time is spent for generating the keys to check and highly parallel hard-
ware like CUDA graphics cards or FPGAs can be used in an efficient way. Using
some kind of data structure for the queue in the best-first-search which allows
inserts, searches and removals in O(log(n)) makes generating the sub key spaces

Title Suppressed Due to Excessive Length 7

very time efficient. However, memory consumption increases because up to m · g
solutions need to be tracked in parallel, when m equations are used and g sub
key spaces have been generated.

4.1 Performance results

Executing the old attack against 100 randomly chosen keys only resulted in 71%
success rate with 215 keystreams available and 242 keys checked. Using our new
key ranking method allowed us to recover the key in 90% of all tests, with also
242 keys checked in total. We used 35 instead of 22 equations, but checked the
8192 most likely sub key spaces. Figure 2 includes more details.

Fig. 2. Success rate of the improved attack

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 8192 16384 24576 32768 40960 49152 57344 65536

p
ro

b
a
b
ili

ty
 o

f
s
u
c
c
e
s
s
 w

it
h
 2

3
4
 k

e
y
s
 c

h
e
c
k
e
d

keystreams available

old NTW attack
new attack

Another advantage of our key ranking strategy is, that the attack time doesn’t
need to be fixed at the beginning of the attack. Using just a single equation sys-
tem has the disadvantage that all solutions are checked in an order not depending
on their probability. Checking an equation system with 2n solutions will give the
correct key after having checked 2n−1 solutions in average (if all equations in
the system are correct). Using our approach makes it possible to start the attack
with some reasonable parameters and then just wait for the correct key. If a lot
of equations in A are correct, the correct key will be found much faster in average
than with the original approach. If A contains a lot of incorrect equations, the
attack will take longer, but one can decide to continue or cancel the attack at
any point of time (assuming that enough main memory for the best-first-search
is available).

To speed up the final search through all generated sub key spaces, we present
an FPGA implementation of the final search in the next part of this paper.

8 Authors Suppressed Due to Excessive Length

5 FPGA Implementation

FPGAs are very well-suited for an implementation of the final search phase of a
sub key space. Linear Feedback Shift Registers form the main part of the DSC
algorithm, and they can be implemented much more efficiently on an FPGA
than on a CPU or GPU platform.

5.1 Basic Implementation Idea

Our improved DSC attack requires the knowledge of a valid reference (IV,
Keystream) pair and an underdetermined equation system

A · k = b (1)

that constrains the key space. A and b are determined by the first part of the
attack (see section 3), k denotes the cipher key.

The FPGA design must iterate over all potentially valid cipher keys accord-
ing to equation (1), compute the keystream and compare it to the reference
keystream. Therefore, a cipher key generator, a DSC keystream generator and
a compare unit comparing the keystream output to the reference keystream is
necessary for the FPGA implementation. The design shall report cipher keys
that produce an identical keystream as the reference.

The most convincing way to implement the key generator is using a counter or
full-cycle LFSR that generates “independent” bits and a combinatorial function
generating “dependent” bits that use the “independent” bits as an input. The
equation systems must be transformed beforehand for this purpose, such that
the dependent bits are described as a function of the independent bits. The DSC
keystream generator can be implemented straight-forward as described in [4].

5.2 Optimizations

Optimizations are possible on several levels compared to a straight-forward im-
plementation. A list of all matrices used for describing the optimizations is given
in Table for clarity reasons.

Simple Improvements: The key generator can be shared among several DSC
units, as it generates one key per cycle whereas the compare units need multiple
clock cycles for verifying one key. Unnecessary control signals may be removed
and logic delays shall be kept short by inserting registers on critical paths.

DSC Speedup: The fundamental DSC implementation as described in [4] re-
quires three clock cycles per bit of keystream output. This can be reduced to
one clock cycle by multiplexing and re-arranging the feedback taps. The corre-
sponding feedback taps can be determined from the feedback matrices R2

j and

R3
j . [1]

Title Suppressed Due to Excessive Length 9

Table 1. Matrices describing the Key Loading and the Equation System

Matrix Dimension Description

k 64 × 1 Cipher Key
sk 128 × 1 Session Key

ski,j len(Rj) × 1 Vector that loads the i-th Bit of sk into Register j
ck 128 × 1 Zero-extended Cipher Key k
iv 128 × 1 Zero-extended Initialization Vector
di 80 × 1 DSC State after i clocked in bits, without Output Combiner

di,j len(Rj) × 1 State of Rj after i clocked in bits
Rj len(Rj) × len(Rj) Clock Matrix of Register j
L 80 × 128 Load Matrix (Session Key to Initial State)
A′ 128 × len(x) Equation System Matrix
b′ 128 × 1 Equation System Offset Vector
x len(x) × 1 Key Generator Counter Value

Key Loading: [4] suggests to load the session key in 128 clock cycles by clocking
in one bit per cycle. This can be represented as iterating 128 times over the
linear transformation di,j = Rj · di−1,j + ski,j for all four registers j, where
d0 = (0, ..., 0) and ski,j is a vector with the size of register j in which the most
significant position is set to bit i of the session key and all other positions are
zero.

The key can be loaded in one cycle by summarizing the four matrices R1,2,3,4

into one load matrix L such that

d128 = L · sk (2)

holds. A similar optimization is described in [1], but they only propose to load
16 bits per clock cycle.

As a second step of improvement, the calculation of the full cipher key can
be skipped: As described before, the “dependent” part of the cipher key is a
combinational function of the “independent” cipher key bits. A matrix A′ and
a vector b′ transforming an independent value x into the cipher key ck can be
derived from A and b, such that the equation

ck = A′ · x + b′ (3)

generates one key candidate compliant to equation (1) for each value of x. As
the session key is the sum of cipher key and initialization vector,

sk = ck + iv (4)

the whole initial state can be expressed as a function of the independent cipher
key bits by inserting equation (4) into equation (2) and then equation (2) into
equation (3):

d128 = LA′x︸ ︷︷ ︸
dynamic

+L(b′ + iv)︸ ︷︷ ︸
static

(5)

10 Authors Suppressed Due to Excessive Length

Hard-Coding: Where the plain NTW attack proposed one equation system
A · k = b, our key ranking allows us to reuse the matrix A and just invert one
or more equations, i.e. modify b, if no key has been found for a particular sub
key space. Hence, only the b vector needs to be loaded into the FPGA at run
time, while A can be hard-coded into the design by a VHDL preprocessor. This
saves hardware resources on the FPGA, reduces the complexity and eliminates
potentially critical paths.

The reference keystream can be hard-coded as well.

Early Abort: A cipher key can be considered invalid as one bit from the
generated keystream differs from the reference. In such a case, the comparison to
the reference keystream can be aborted early such that the unit can immediately
continue with the next key candidate.

The probability that k subsequent bits of the keystream are correct for a
wrong key is 2−k. On average, the comparison for a wrong key already fails after
two keystream bits. Therefore, n − 2 cycles can be saved in comparison to a
deterministic unit that always compares n bits.

We compare at most 32 bits and thus save 30 cycles on average.

Pre-Ciphering Pipeline: With the Early Abort optimization, several DSC
units are competing to be loaded with a new initial state. As the arbitration
logic complexity rises with the number of competing units, this number is to be
kept low. A good way to do this is outsourcing the pre-ciphering phase into a
strictly sequential, deterministic pipeline. With this optimization, the state after
pre-ciphering is directly loaded into the computing DSC units.

Input Buffering: Idle time of the FPGA has a negative impact on the effective
performance. Therefore, an input buffer is used such that the PC can enqueue
multiple tasks and the FPGA can immediately load the next task as soon as the
previous one is finished.

5.3 Implementation

For our implementation, a Xilinx Spartan-3E 1200 (XC3S1200E) FPGA on a
Digilent Nexys 2 board was used. The PC communication was implemented via
the on-board RS-232 interface.

Our final implementation includes all optimizations as described in section
5.2. The runtime of the design is not entirely deterministic, as – for a specific
keystream – the position of the first failing comparison is unknown. Therefore,
the key generator was given the ability to be paused, which is necessary when
all available DSC units are busy.

Figure 3 shows the structure of the key search unit, which forms the essential
part of our hardware design. The dotted lines in the diagram denote the hard-
coded data. The “State Offset” is sent to the FPGA at run time for each sub
key space. It is determined by the attacked IV and the vector b′.

Title Suppressed Due to Excessive Length 11

Fig. 3. Block Diagram of Key Search Unit

C
o
u

n
te

r/
Fu

ll
C

y
cl

e
 L

FS
R

"S
ta

te
 A

ft
e
r

Lo
a
d

"
Lo

g
ic

P
re

-C
ip

h
e
ri

n
g

 P
ip

e
lin

e

Arbiter

DSC
Keystream Generator

Compare Unit

DSC
Keystream Generator

Compare Unit

DSC
Keystream Generator

Compare Unit

DSC
Keystream Generator

Compare Unit
re

q

g
ra

n
t

/stall

1

State Offset

succ

succ

FIFO
din

counter value

wr

dout

rd

empty

Reference Keystream

Matrix A'

One pipelined key generator (see 5.2) was chosen to serve four DSC units –
this is the maximum number implementable on one Look-Up Table.

The key search unit consumes about 30% of the FPGA resources in total,
such that three instances can be created on our device. This enables searching
three sub key spaces at the same time.

5.4 Performance Evaluation

This section compares the performance achieved by our FPGA implementation
with the CUDA performance published in [4].

We used five different, randomly generated equation systems for evaluating
the maximum frequency by synthesizing the design for each of the equation
systems. Table 2 shows the achieved results.

Table 2. Performance Evaluation (using 232 equations)

Max Frequency Performance [keys
s

] Cost [US$] Cost-Performance

FPGA 140 MHz 408.8 · 106 169 2.42 · 106 keys
US$·s

[4] CUDA / GTX 260 unknown 148 · 106 190 0.78 · 106 keys
US$·s

6 Summary

The final attack could be applied as follows: In the first phase of the attack, the
adversary recovers keystreams by eavesdropping on a DECT call. If a phone is

12 Authors Suppressed Due to Excessive Length

used which displays a call duration counter that is implemented on the base sta-
tion, the adversary might be able to recover about 5 known keystreams per sec-
ond. After nearly two hours, the adversary has collected 215 known keystreams,
which can be processed in the next phase of the attack.

In the second phase of the attack, the adversary needs to generate frequency
tables from the known keystreams. We did not modify this step in our paper.
In the original attack, Nohl, Tews, and Weinmann used a SUN X4440 using 4
Quad-Core AMD Opteron CPUs running at 2.3 GHz to generate the tables in 20
minutes. This process is highly CPU bound, so that a single Opteron CPU could
accomplish the task in about 80 minutes. Because this can be started while the
first phase is still running, phases one and two need only two hours to complete.
The runtime of these two phases is only affected by the rate of the keystream
recovery process and the computing power available.

In the third and last phase, the adversary uses the frequency tables generated
in phase two to search for the correct key. He uses a PC which generates the most
likely sub key spaces as described in Section 4 and transfers them to a single
or multiple FPGAs connected via a serial line or other interfaces. The time for
generating the sub key spaces is negligible compared to the time consumed by
the FPGAs to check the sub key space, so that many FPGAs can be supplied
by a single PC.

Fig. 4. Time to completion of the attack using a single FPGA and 232 equations

 0

 20

 40

 60

 80

 100

 1 10 100 1000

p
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
le

te
d
 a

tt
a
c
k
s
 a

t
th

is
 t
im

e

time in minutes for the last phase of the attack (logscaled)

using 32768 keystreams

Figure 4 shows the time to the completion of the last attack phase, using
just a single Xilinx Spartan-3E 1200 (XC3S1200E) FPGA using 215 keystreams.
About 20% of our experiments completed within one hour. The next 20% of our
experiments needed up to one day to complete. The remaining 60% needed more
than a day to complete. Please note that doubling the number of FPGAs used
reduces the total time for the last phase by half and the attack scales almost
perfectly when the number of available FPGAs is increased.

Title Suppressed Due to Excessive Length 13

References

1. Alcatel. Data ciphering device. U.S. Patent 5,608,802, 1994.
2. S. Lucks, A. Schuler, E. Tews, R.P. Weinmann, and M. Wenzel. Attacks on the

DECT authentication mechanisms. Topics in Cryptology–CT-RSA 2009, pages 48–
65.

3. H.G. Molter, K. Ogata, E. Tews, and R.P. Weinmann. An Efficient FPGA Imple-
mentation for an DECT Brute-Force Attacking Scenario. In 2009 Fifth International
Conference on Wireless and Mobile Communications, pages 82–86. IEEE, 2009.

4. K. Nohl, E. Tews, and R.P. Weinmann. Cryptanalysis of the DECT Standard
Cipher. Feb 2010.

