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Abstract. Secure Multiparty Computation (SMC) enables a set of users to evaluate certain

functionalities on their respective inputs while keeping these inputs encrypted throughout the

computation. In many scenarios, however, outsourcing these computations to an untrusted server

is desirable, so that the server can perform the computation on behalf of the users. Unfortunately,

existing solutions are either inefficient, rely heavily on user interaction, or require the inputs to

be encrypted under the same key—drawbacks making the employment in practice very limited.

We propose the first general-purpose construction that avoids all these drawbacks: it is efficient,

it requires no user interaction whatsoever (except for data up- and download), and it allows

evaluating any dynamically chosen function on inputs encrypted under different independent

public keys. Our solution assumes the existence of two non-colluding but untrusted servers

that jointly perform the computation by means of a cryptographic protocol. This protocol is

provably secure in the semi-honest model. We demonstrate the applicability of our result in two

real-world scenarios from different domains: Privacy-Preserving Face Recognition and Private

Smart Metering. Finally, we give a performance analysis of our general-purpose construction to

highlight its practicability.

Keywords: Secure Multiparty Computation, Homomorphic Encryption, Outsourcing Compu-

tation, Semi-Honest Model

1 Introduction

Online communication in today’s society is mostly being done through central web-servers which pro-

cess vast amounts of private data. Examples of online services exploiting this paradigm are social

networks, online auctions, and cloud services to name just a few. In the recent years, many con-

cerns have been raised regarding data privacy in these scenarios, and serious privacy breaches have

occurred [2, 4, 6, 51].

In order to deal with these privacy threats to sensitive data, the concept of Secure Multiparty

Computation (SMC) gains increasing importance. In this setting, the computation is carried out in-

teractively between several participating parties, in a way that sensitive data is kept hidden (for

example encrypted or shared among protocol participants) and only the desired output of the com-

putation is available. In this paper we focus on solutions based on homomorphic encryption [19, 37].

All current practically feasible SMC solutions heavily rely on interaction, since the basic encryption

schemes in use support only limited homomorphisms. In order to perform more complex operations,
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decryption steps are needed, which require parties holding a secret key, or a share thereof, to be

online. This interactive nature of the protocols greatly hinders adoption. Consider, for example, an

application scenario where a number of clients encrypt individual input data (such as individual sales

records) and push it to a server, which is supposed to aggregate the data (in order to compute global

sales statistics). In this case it is not feasible to assume that all (or most) clients are still online and

able to assist the server in its computations.

The same problem holds for other scenarios as well, such as privacy-preserving smart metering:

while individual meters should be able to encrypt their data and push it to a server for further process-

ing, the party who performed the initial encryption should not be involved in further computations.

This application shows another key characteristic of most practical problems: rather than encrypting

all input data with the same public key, which is required by all known efficient SMC solutions, each

party should be able to use its own pair of public and private keys. Thus, an efficient SMC solution is

required that limits interaction with clients as much as possible, while allowing to compute on data

encrypted with different public keys. More precisely, we are considering the following scenario in this

paper:

1. A set of n mutually distrusting clients P1, . . . , Pn (the number n may change dynamically over

time), each having its own public and private key pair, encrypt data under their respective public

keys and store these encryptions on a server C.

2. Any dynamically chosen function (i.e., the function does not need to be specified at the time data

is encrypted) should be computed by C on the clients’ data, while all inputs and intermediate

results remain private.

3. Due to the fact that clients are not always online in practice, C needs the ability to compute

these functions without any interaction of the clients. In particular, this also concerns the clients’

retrieval of results.

4. Once online, individual clients can retrieve the result while the server learns nothing at all.

We present a simple and efficient solution to this scenario, meaning that we give a general-purpose

cryptographic protocol (with no client interaction) that allows outsourcing of any multi-party com-

putation of inputs encrypted under multiple unrelated public keys. Our solution employs two non-

colluding, semi-honest but untrusted servers C and S. All steps in our protocol rely on no interaction

with the clients whatsoever. These clients only initially store their encrypted inputs on the (main)

server C who in turn can compute any dynamically chosen n-input function on n given (encrypted)

inputs in an SMC protocol together with the second server S. We show our protocols secure in the

semi-honest model, meaning that all protocol participants follow the protocol description, but may

try to gather information about other parties’ inputs, intermediate results, or overall outputs just

by looking at the transcripts. For performance reasons, this is the predominant security model used

in practical implementations of SMC [11, 16, 24, 28, 43, 50, 23], which particularly makes sense in our

setting where the servers (performing the computations) are business driven parties in practice, and

cheating would cause negative publicity and harm their reputation.

Assuming the existence of two non-colluding servers in order to perform the secure computations

is very common both in the theoretical (e.g., [21, 18]) and the practical community (e.g., [16, 24]). In

fact, according to [55], a completely non-interactive solution in the single server setting can be proven
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to be impossible to realize (drawing on the impossibility of program obfuscation). Hence, if complete

non-interaction of the clients is required (as in our case), we need at least two servers and so our

solution is the best we can hope for in this regard. Moreover, several real-world applications relied on

the assumption of multiple non-colluding servers in the past [11, 16, 10]. For instance when considering

cloud computing scenarios, the multiple servers could be different cloud providers [46].

We make extensive use of the BCP cryptosystem by Bresson, Catalano and Pointcheval [15] which is

both additively homomorphic (i.e., it allows addition of plaintexts in the encrypted domain) and offers

two independent decryption mechanisms. The successful usage of the second decryption mechanism

depends on a master secret key that is stored on the second server S in our proposal. With this in

mind, the basic idea of our construction consists of three steps:

1. After collecting the individually encrypted inputs, the main server C runs an SMC protocol with S

in order to transform the given inputs (encrypted under the clients’ public keys) into encryptions

under the product of all involved public keys (ensuring that all clients need to participate in a

successful decryption) without changing the underlying plaintexts.

2. With these transformed ciphertexts (under the same public key), we can run traditional addition

and multiplication SMC protocols by using the additively homomorphic property of the underlying

cryptosystem, allowing to compute any function represented by an arithmetic circuit.

3. Once the result (encrypted under the product of all keys) is ready, C runs a final SMC protocol

with S in order to transform this result back into encryptions under the clients’ respective public

keys.

Finally, we show the applicability of our framework to two application scenarios taken from different

domains. Recently, SMC protocols have been used to construct privacy-preserving protocols for face

recognition [23, 52]. We show how our general-purpose protocols can be leveraged here in order to

get rid of interaction with the users of such systems. To highlight the real-world applicability of our

construction, we elaborate on several scenarios in the area of social networks where face recognition is

used for image tagging services [5] or in order to help law enforcement agencies to prosecute suspected

persons [3]. Since social network users usually access their profiles via resource-constrained mobile

devices that are not always online, a completely non-interactive solution is crucial for such systems

to work in practice. We adapt the privacy-preserving face recognition protocol presented in [23] to

our construction and show its practicability by giving an implementation together with a detailed

performance analysis. Similarly, privately collecting sensor readings from smart meters has been an

important application of SMC protocols recently [28, 42, 43]. We show that certain variants of our

original proposal can be used to efficiently enhance privacy in smart grids. For instance, we design a

protocol to privately aggregate sensor readings with very low computational costs at the smart meters

due to our non-interactive construction. Additionally, we can realize privacy-preserving billing under

complex policies.

Related Work. Previous papers on SMC protocols were concerned with interactive solutions where

all parties are actively involved in computing an arbitrary function on their respective inputs in a

privacy-preserving manner [17, 32, 44, 50, 56, 36, 22, 9]. Since we strive for a non-interactive solution,

these constructions are not applicable in our scenario. To reduce computational costs at the clients’
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side, SMC has been considered in the client/server model (as we do) [11, 21, 25, 35, 39, 48, 40], but again

with interaction of the clients during and/or after the computations. Furthermore, Choi et al. [18]

give a solution with minimal interaction of the clients, while relying on two non-colluding servers

(as in our construction). Their solution, however, is mostly of theoretical interest both for efficiency

reasons and because clients are bound to encrypt their private inputs under a single public key that

is shared between the two servers (so clients do not have individual private keys). Therefore, in order

to efficiently deal with modern star-like communication patterns where clients store their data on a

central server (encrypted under their own associated public keys), Halevi et al. [33] proposed a solution

in which, although being non-interactive, the server is entitled to learn the result of the computation

which contradicts our setting where only clients are allowed to learn the output.

In [29], Gentry proposes to leverage Fully Homomorphic Encryption (FHE) to solve the problem

statement in our setting. Unfortunately, besides the lack of efficiency of recent FHE schemes [12–14,

30], the main drawback is that all clients need to run an interactive setup and an interactive decryption

phase after the server computed the result.

Very recently, López-Alt et al. [45] introduced the notion of On-the-Fly SMC as the first solution

to a similar scenario as ours, yet still relying on an interactive decryption phase. They implement this

by using a novel primitive called Multikey FHE that allows computation on data encrypted under

multiple unrelated public keys, having similar efficiency shortcomings as all the other FHE schemes.

In a nutshell, all existing solutions are not applicable in our setting where SMC is to be performed

on data encrypted under multiple unrelated keys, except for one [45] which lacks in efficiency and

relies on an interactive user decryption.

Outline. Some standard notation, the security model of semi-honest adversaries, and the BCP en-

cryption scheme are summarized in Section 2. We give our construction and proofs of correctness

for the individual building blocks in Section 3, while analyzing security in Section 4. Useful variants

and opimizations of our protocols are given in Section 5. We summarize our experimental results in

Section 6 and elaborate on application scenarios in Section 7. Finally, we conclude in Section 8 while

focusing on possible future work.

2 Preliminaries

2.1 Notation and Security Model

Throughout the paper, we use the following standard notation: We write x ←− X if X is a random

variable or distribution and x is to be chosen randomly from X according to its distribution. In the

case where X is solely a set, x
U
←− X denotes that x is chosen uniformly at random from X . For an

algorithm A we write x←− A(y) if A outputs x on fixed input y according to A’s distribution.

We assume all participants to be honest-but-curious, i.e., we consider the semi-honest model [31].

This means that all involved parties follow the protocols, but try to gather information about the

outputs (or intermediate results) of the computation just by looking at the protocols’ transcripts. In

addition, we assume that there is no collusion between any of the parties. Considering this model

makes sense in our scenario as servers performing the computations are business driven parties in
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practice who do not want to harm their reputation and therefore avoid cheating (which would cause

negative publicity).

From a theoretical point of view, designing protocols in the semi-honest model is considered as the

first step towards protocols that can deal with malicious adversaries. We see this as future work.

2.2 Additively Homomorphic Encryption

A public-key encryption scheme E = (KeyGen,Enc,Dec) is said to be additively homomorphic if there

is an operation “·” in the encrypted domain (usually this is the multiplication) such that for given

ciphertexts c1 and c2, it holds that c1 · c2 is an encryption of the addition of the underlying plaintexts:

Decsk(Encpk(m1) · Encpk(m2)) = m1 +m2, (1)

where pk and sk are the public and secret key, respectively, and m1,m2 are two plaintext messages.

For a more extensive and formal treatment, we refer to Armknecht et al. [7].

In this work, we use the additively homomorphic cryptosystem by Bresson, Catalano and Pointcheval

(BCP) [15] which additionally offers two independent decryption mechanisms. The second decryption

mechanism decrypts a given ciphertext successfully if and only if a certain master secret key is known.

The general setting for such schemes with a double decryption mechanism is as follows: Besides the

usual key generation, encryption and decryption algorithms of the users, a master runs an initial

setup to generate public parameters and a master secret. This master secret can then be used by the

master in a master decryption algorithm (the second decryption mechanism) to successfully decrypt

any given ciphertext.

We require such homomorphic schemes with a double decryption mechanism to be semantically

secure, which informally means that one cannot distinguish between encryptions of known messages

and random messages. More details and stronger security notions can be found in [26].

The BCP Cryptosystem and its Properties. Essentially, the BCP cryptosystem [15] is an addi-

tively homomorphic variant of the El Gamal cryptosystem [27]:

Setup(κ): For a security parameter κ, choose a safe-prime RSA-modulus N = pq (i.e., p = 2p′ +1 and

q = 2q′ + 1 for distinct primes p′ and q′, respectively) of bitlength κ. Pick a random element g ∈ Z
∗

N2

of order pp′qq′ such that gp
′q′ mod N2 = 1 + kN for k ∈ [1, N − 1]. The plaintext space is ZN and

the algorithm outputs

public parameters PP = (N, k, g)

master secret MK = (p′, q′).
(2)

KeyGen(PP): Pick a random a ∈ ZN2 and compute h = ga mod N2. The algorithm outputs the

public key pk = h and secret key sk = a. (3)

Enc(PP,pk)(m): Given a plaintext m ∈ ZN , pick a random r ∈ ZN2 and output the ciphertext (A,B)

as

A = gr mod N2 B = hr(1 +mN) mod N2. (4)
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Dec(PP,sk)(A,B): Given a ciphertext (A,B) and secret key sk = a, output the plaintext m as

m =
B/(Aa)− 1 mod N2

N
. (5)

mDec(PP,pk,MK)(A,B): Given a ciphertext (A,B) (encrypted using the randomness r ∈ ZN2), a user’s

public key pk = h and the master secret MK. Let sk = a denote the user’s private key corresponding

to pk = h. First compute a mod N as

a mod N =
hp′q′ − 1 mod N2

N
· k−1 mod N, (6)

where k−1 denotes the inverse of k modulo N . Then compute r mod N as

r mod N =
Ap′q′ − 1 mod N2

N
· k−1 mod N. (7)

Let δ denote the inverse of p′q′ modulo N and set γ := ar mod N . The algorithm outputs the

plaintext m as

m =
(B/(gγ))

p′q′

− 1 mod N2

N
· δ mod N. (8)

For proofs of correctness and semantic security (under the Decisional Diffie-Hellman assumption), we

refer to [15]. If the context is clear, we omit the public parameters PP in the algorithms, e.g., we write

Encpk(m) instead of Enc(PP,pk)(m).

3 Our Construction

Recall that we are considering a scenario with n (mutually distrusting) clients, denoted by P1, . . . , Pn,

each having its own pair of public and private keys (pki, ski), i = 1, . . . , n.1 Each client Pi (i = 1, . . . , n)

stores private data mi encrypted under its respective public key pki on an untrusted server C.

Now, C is assigned to compute an arbitrary n-input function f on the clients’ inputs, while keeping

the inputs and intermediate results private. We represent such functions f by means of arithmetic

circuits, i.e., the computation of a given function amounts to the evaluation of addition and multipli-

cation gates over encrypted inputs. More details on this and other means of representing a function

f can be found in [41].

Our basic idea to realize this functionality can be summarized as follows (illustrated in Figure 1):

1. We assume the existence of a second untrusted server S that acts semi-honestly and that does not

collude with any of the other parties. See the discussion on the semi-honest model in Section 2

and on the use of two non-colluding servers in the Introduction for further details on why this is

a reasonable and worthwhile assumption.

1 Fixing the number n initially is for reasons of readability only. In fact, in our construction, this number is
allowed to change over time. More importantly, clients are able to generate their own pair of public and
private keys without communicating to some trusted third party. Therefore, participation in the system is
a dynamic process.



Efficiently Outsourcing Multiparty Computation under Multiple Keys 7

2. Initially, this second server S runs a setup Init that sets up the system and distributes the system’s

public parameters.

3. After this initial setup, clients can use the cryptosystem’s KeyGen (independently of any further

party) to generate their respective pair of public and private keys, and to upload encryptions of

their private data to the first server C.

4. Once an (arbitrary) function f is to be evaluated on the, say, n inputs m1, . . . ,mn of clients

P1, . . . , Pn, the server C runs a cryptographic protocol with the second server S that consists of

only four building blocks: KeyProd,Add,Mult and TransDec. KeyProd tranforms all ciphertexts

to encryptions under a single public key (whose corresponding secret key is unknown), Add and

Mult evaluate addition and multiplication gates on encrypted inputs, respectively, and TransDec

transforms the encrypted result f(m1, . . . ,mn) back to n encryptions each under a different client’s

public key.

The overall protocol is run with no interaction of the clients whatsoever. Recall that the inputs

m1, . . . ,mn are encrypted under different public keys.

5. After all computations are done, each client retrieves the encrypted output of the server C which

it decrypts locally with its respective private key in order to get the result f(m1, . . . ,mn).

Server SClients P1, . . . , Pn Server C

P1 : (pk
1
, sk1),m1

Pn : (pk
n
, skn),mn

Encpk
1
(m1)

Encpk
n
(mn)

Encpk
1
(m1)

Encpk
n
(mn)

crypt.
protocol

to compute

Encpk
1
(y)

Encpk
n
(y)

f(m1, . . . ,mn)
y =

Pi : recover y as
Decski(Encpki(y))

Encpk
i
(y)

Initpublic params PPpublic params PP

Fig. 1. The basic concept of our construction.

In the following, we explain the individual steps of our protocols:

Initialization. Initially, a setup process initializes the BCP cryptosystem and distributes the system’s

public parameters. This setup is run by the second server S (since S is semi-honest and needs the

master secret). We denote this algorithm by Init, which simply runs the algorithm Setup of the BCP

cryptosystem and sends its public parameters PP = (N, k, g) to the server C (see Figure 2).

Data Upload. In order to upload private data to the server C, a client P first needs to receive the

system’s public parameters PP = (N, k, g) to be able to generate its own pair of public and private

keys. After these keys are generated, the client P can encrypt its private data using Enc and upload it

together with its public key to the server C. The details of this procedure can be found in Figure 3.
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Server C

PP = (N, k, g)
←−−−−−−−−−−−

Server S

(PP,MK)←− Setup(κ)

Fig. 2. Init(κ). The initial setup algorithm, where κ is the security parameter for the BCP scheme.

Client Pi (for i = 1, . . . , n)

(pki, ski)←− KeyGen(PP)
(Ai, Bi)←− Enc(PP,pki)(mi)
where mi is Pi’s private data

PP = (N, k, g)
←−−−−−−−−−−−

((Ai, Bi), pki)
−−−−−−−−−−−→

Server C

Fig. 3. Steps that have to be taken by a client Pi (for i = 1, . . . , n) which wants to participate in computations
made on the server C.

Cryptographic Protocol between Servers C and S. Assume that the server C wants to compute

an encryption of f(m1, . . . ,mn) for an n-input function f where m1, . . . ,mn are the private inputs of

the clients P1, . . . , Pn. Recall that during the data upload phase, C retrieved only encryptions of the

inputs m1, . . . ,mn. C does its computations by means of a cryptographic protocol between C and S

consisting of the 4 subprotocols: KeyProd, Add, Mult and TransDec.

Recall that we represent the function f by an arithmetic circuit, meaning that we have to be

able to securely evaluate addition and multiplication gates. Addition gates seem to be easy to deal

with since the underlying cryptosystem is additively homomorphic. Unfortunately though, the clients’

inputs are encrypted under different public keys and the additive property of the BCP cryptosystem

only works for encryptions under the same public key. Therefore, the server C first runs the algorithm

KeyProd which transforms all involved ciphertexts to encryptions under a single key. This single key

is the product of all involved public keys and so C remains unable to decrypt the ciphertexts as it does

not know the corresponding secret key. In fact, the secret key needed to decrypt encryptions under

the product of all clients’ public keys is the sum of all clients’ secret keys. Of course, decryption still

works by using the master secret which is only known to the second server S and not to C. We stress

that S never gets to see encryptions of the clients’ original inputs but only blinded versions of them,

so it does not learn these inputs although having the master secret.

After this key-transformation of ciphertexts, the additive property of the underlying cryptosystem

can be exploited to securely evaluate addition gates. This step is denoted by Add in our construction.

Multiplication gates can be securely evaluated by (an adapted version of) the well-known protocol

of [19], essentially relying on “blinding-the-plaintext” techniques. This is done by our protocol Mult.

Finally, once the complete arithmetic circuit representing the function f is successfully evaluated

by using Add and Mult, C runs the protocol TransDec in order to transform the results (encrypted

under the product of all public keys) back to encryptions of the individual clients’ public keys without

changing the underlying plaintext.
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In the following, we describe the individual building blocks for this protocol between C and S.

The Subprotocol KeyProd. The purpose of this protocol is to transform the encryptions of all par-

ticipating clients P1, . . . , Pn into encryptions under a single public key, namely the product Prod.pk :=
∏n

i=1 pki mod N2 of all involved public keys without changing the underlying plaintexts. Using the

product key here ensures that it is not a key of C’s choosing. In fact, the corresponding secret key

required to successfully decrypt an encryption under Prod.pk is the sum
∑n

i=1 ski of all clients’ secret

keys. This subprotocol needs to be run only once per fixed set of encrypted inputs and does not

depend on the actual function C wants to evaluate. This means that after the execution of KeyProd,

any function can be computed on the transformed ciphertexts.

For a given ciphertext (Ai, Bi) encrypted under the public key pki of the client Pi (i = 1, . . . , n),

C blinds the ciphertext with a random message τi and sends it to S. Since S knows the master secret

MK, it uses it to decrypt this blinded ciphertext and re-encrypt it under the product of all clients’

public keys. The result of this is then sent back to C who can remove the blinding τi again, achieving an

encryption under the product key without changing the underlying plaintext. A detailed description

of these steps can be seen in Figure 4.

Server C, stores ((Ai, Bi), pki), i = 1, . . . , n

On input ciphertexts (A1, B1), . . . , (An, Bn):
Prod.pk←−

∏n
i=1 pki mod N2

for all i = 1, . . . , n:

Pick random τi
U
←− ZN

(Ci, Di)←− Add((Ai, Bi),Encpki (τi))

for all i = 1, . . . , n:
(Ai, Bi)←− Add((Wi, Zi),EncProd.pk(−τ))

output the ciphertexts (A1, B1), . . . , (An, Bn)

∀i = 1, . . . , n :
−−−−−−−−−−−→

(pki, (Ci,Di))

∀i = 1, . . . , n :
←−−−−−−−−−−−

(Wi, Zi)

Server S, stores MK = (p′, q′)

Prod.pk←−
∏n

i=1 pki mod N2

for all i = 1, . . . , n:
zi ←− mDec(pki,MK)(Ci, Di)

(Wi, Zi)←− EncProd.pk(zi)

Fig. 4. KeyProd. Transforms encryptions under pk1, . . . , pkn into encryptions under Prod.pk =
∏n

i=1 pki
mod N2 without changing the underlying plaintexts.

The Subprotocols Add and Mult. Recall that the server C wants to compute the function f , which

we consider to be represented as an arithmetic circuit over the ring ZN (note that hitting on a value in

ZN which is not invertible modulo N happens with negligible probability only). Therefore, we have to

deal with addition- and multiplication-gates in ZN . Without loss of generality, we consider these as 2-

input-1-output gates. The algorithm Add deals with an addition-gate, while the subprotocolMult deals

with a multiplication-gate. We start with the former and stress that it is a non-interactive protocol

which does not need the server S. This is due to the fact that the underlying BCP cryptosystem

is additively homomorphic for encryptions under the same public key. We recall that this is exactly

what the subprotocol KeyProd achieved by computing encryptions under the product Prod.pk, so all
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clients’ private inputs m1, . . . ,mn are now encrypted under the same public key. The algorithm to

perform the addition is depicted in Figure 5.

Server C stores encryptions
of the form (A,B) encrypted under Prod.pk

On input two ciphertexts (A,B) and (A′, B′):

(A,B)←− (A ·A′ mod N2, B · B′ mod N2)

output the ciphertext (A,B)

Fig. 5. Add. Given two ciphertexts (A,B) and (A′, B′) encrypted under Prod.pk, it computes an encryption
of the sum of the underlying plaintexts.

A multiplication-gate, however, has to be computed interactively with the server S. In fact, the

protocol we use is an adaptation of the well-known multiplication protocol of [19] which sends blinded

version of the original ciphertexts (that are to be multiplied) to S that in turn uses the master secret

to decrypt. Then, S performs the multiplication in the clear and re-encrypts. The (encrypted) result

is sent back to C, which can remove the blinding again. Details are given in Figure 6.

Server C, stores Prod.pk and pk1, . . . , pkn

On input ciphertexts (A,B) and (A′, B′) under Prod.pk:

Pick random σ, σ′
U
←− ZN

(C,D)←− Add((A,B),EncProd.pk(−σ))
(C′,D′)←− Add((A′, B′),EncProd.pk(−σ

′))

(T1, T2)←− EncProd.pk(−σσ
′)

(A,B)←− (Z1Aσ′

A′σT1 mod N2, Z2Bσ′

B′σT2 mod N2)

Output ciphertext (A,B)

(C,D), (C′, D′)
−−−−−−−−−−−−→

(Z1, Z2)
←−−−−−−

Server S, stores MK,Prod.pk,
and pk1, . . . , pkn

z ←− mDec(Prod.pk,MK)(C,D)

z′ ←− mDec(Prod.pk,MK)(C
′, D′)

(Z1, Z2)←− EncProd.pk(z · z
′)

Fig. 6. Mult. Given two ciphertexts (A,B) and (A′, B′) encrypted under Prod.pk, it computes an encryption
of the multiplication of the underlying plaintexts.

The Subprotocol TransDec. Finally, the task of subprotocol TransDec is to take the encrypted result

of f(m1, . . . ,mn), encrypted under Prod.pk, and to transform it back to n encryptions of the same

plaintext f(m1, . . . ,mn), each under a different client’s public key pk1, . . . , pkn, respectively.

Again, the idea is to blind the original ciphertext and send it to S, which in turn decrypts using

the master secret and then creates n encryptions for each client’s public key. The created ciphertexts

are returned to C which removes the blindings. The precise steps of this protocol are summarized in

Figure 7.
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Server C, stores Prod.pk and pk1, . . . , pkn

On input a ciphertext (A,B) under Prod.pk:

Pick random τ
U
←− ZN

(C,D)←− Add((A,B),EncProd.pk(τ))

for all i = 1, . . . , n:
(Ai, Bi)←− Add((Wi, Zi),Encpki(−τ))

output the ciphertexts (A1, B1), . . . , (An, Bn)

(C,D)
−−−−−→

∀i = 1, . . . , n : (Wi, Zi)
←−−−−−−−−−−−−−−−−−−

Server S, stores MK,Prod.pk
and pk1, . . . , pkn

z ←− mDec(Prod.pk,MK)(C,D)
for all i = 1, . . . , n:

(Wi, Zi)←− Encpki (z)

Fig. 7. TransDec. Given a ciphertext (A,B), it computes n ciphertexts (A1, B1), . . . , (A1, B1) of the same
plaintext, encrypted under pk1, . . . , pkn, respectively.

Data Retrieval. Each client Pi, i = 1, . . . , n, can get the result of the computation by first retrieving

(from C) the encryption of f(m1, . . . ,mn) under its public key pki that has been computed during the

subprotocol TransDec, and then decrypting this ciphertext by using its corresponding private key ski.

3.1 Correctness

We assume that all participants follow our protocol decriptions. Furthermore, we assume that the

initial setup Init has been performed as decribed in Figure 2, and that all clients (wishing to participate)

sent their encrypted private data to the server C as depicted in Figure 3. Under these assumptions,

we show that the remaining protocols KeyProd,Add,Mult and TransDec produce the desired outputs

correctly.

KeyProd: Observe that for i = 1, . . . , n, the values (Ci, Di) are just blinded versions (using τi) of the

original input ciphertexts (Ai, Bi), which are then decrypted (using the master secret MK) and re-

encrypted under the product key Prod.pk. The resulting values (Wi, Zi) can then be transformed back

to encryptions of the original underlying plaintexts by using the additively homomorphic property of

the BCP scheme, and substracting the blinding value τi again.

Add: The correctness of this algorithm follows immediately from the additively homomorphic property

and we refer to [15] for details.

Mult: We show that the output ciphertext (A,B) of algorithm Mult is indeed an encryption (un-

der Prod.pk) of the multiplication of the underlying plaintexts m,m′ of the two input ciphertexts

(A,B), (A′, B′) (encrypted under Prod.pk), respectively. Observe that the decryption of (A,B) un-

der the secret key corresponding to Prod.pk (as mention before, if Prod.pk =
∏n

i=1 pki the cor-

responding secret key is
∑n

i=1 ski) yields z · z′ + σ′m + σm′ + (−σσ′) where z = m − σ, z′ =

m′ − σ′, and σ, σ′ are random blinding values (cf. Figure 6). The expansion of this term gives

mm′ − σ′m− σm′ + σσ′ + σ′m+ σm′ + (−σσ′) = mm′, which is the desired result.

TransDec: Recall that this protocol takes an encryption (A,B) under Prod.pk of a message m as input

and outputs ciphertexts (Ai, Bi), which are encryptions of the same messagem but under the different

public keys pki, for all i = 1, . . . , n. In this protocol, essentially, C blinds the ciphertext (A,B) by
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adding a random message τ to the underlying plaintext m, which S decrypts and encrypts again under

pki, for all i = 1, . . . , n. It is obvious that once C subtracted τ again, the resulting ciphertext will be

an encryption of m under pki, for all i = 1, . . . , n.

Since KeyProd is independent of the actual function f that is to be computed, we see that once

the underlying message f(m1, . . . ,mn) has been computed in the encrypted domain (using Add and

Mult), the correctness of TransDec yields that each client Pi can retrieve its dedicated encryption

of f(m1, . . . ,mn), which it can successfully decrypt by using its corresponding private key ski, i =

1, . . . , n.

4 Security Analysis

The following security analysis considers the semi-honest model only, meaning that all parties follow

the protocol description but try to gather information about other parties’ inputs, intermediate results,

or overall outputs just by looking at the protocol’s transcripts. As usual, security in this model is

proven in the “real-vs.-ideal” framework [31, Ch. 7]: there is an ideal model where all computations

are performed via an additional trusted party and it is then shown that all adversarial behavior in

the real model (where there is no trusted party) can be simulated in the ideal model. We deal with

each subprotocol individually which is possible due to the Composition Theorem for the semi-honest

model [31, Theorem 7.3.3]. Note that the security of all our protocols is essentially based on the well-

known concept of “blinding” the plaintext: Given an encryption of a message, we use the additively

homomorphic property of the cryptosystem to add a random message to it, which blinds the original

plaintext.

Recall that before the actual computations (i.e., the cryptographic protocol) are performed between

servers C and S, there is only the initial setup of the BCP cryptosystem and the step where clients

P1, . . . , Pn store their encrypted private inputs m1, . . . ,mn on the server C – for these two steps, the

security follows from the semantic security of the BCP cryptosystem. Since we assume no collusion at

all between any of the participating parties, it remains to show that neither C nor S learn anything

from the cryptographic protocol (consisting of KeyProd,Add,Mult and TransDec) computing the n

encryptions of f(m1, . . . ,mn) under the clients’ public keys pk1, . . . , pkn, respectively.

KeyProd: The only data sent is fresh ciphertexts. Due to the blinding values τi, i = 1, . . . , n, and

the semantic security of the BCP cryptosystem, these encryptions are indistinguishable from random

ciphertexts and are therefore easily simulatable by encryption of, say, 1. Hence, both servers C and S

do not learn anything at all from these ciphertexts.

Add: This algorithm is non-interactive and does not involve the server S at all, so we are only concerned

about C. For C, however, no information leakage is assured by the semantic security of the BCP scheme

since Add just uses the additively homomorphic property of the cryptosystem.

Mult: Again, the only data sent is fresh ciphertexts of blinded messages and due to the semantic

security of the underlying cryptosystem, we can simulate these by random encryptions.

TransDec: Basically, the security argument here is the same as for the protocol KeyProd. The first step

of TransDec is for C to blind the underlying message of the ciphertext (A,B) (which is encrypted under

Prod.pk) with the random message τ . This ensures that S does not learn any information about the
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original plaintext when receiving the “blinded” ciphertext (C,D). On the other hand, since C receives

fresh encryptions under the public keys of the clients, he gets no information about the underlying

plaintext whatsoever. In the language of simulations, a formal proof would amount to simulating the

views which again is possible by using random encryptions due to the semantic security of the BCP

scheme.

5 Variants

Recall that the main goal of our construction was to get rid of any interaction with the users. At the

same time, our solution is very efficient compared to other existing work in similar scenarios. There

are certain application scenarios, however, where the interaction with users is explicitly wanted, e.g.,

when the server is allowed to learn the result upon the approval of all participating users. In this

section, we give a few variants of our original proposal that allow leveraging our efficient solution to

such applications as well:

1. Intermediate Key Aggregation. If the (encrypted) private data from a client Q is not sent to the

server C directly but goes through a chain of intermediate clients, this variant allows for the

secure aggregation of intermediate public keys to Q’s encrypted data and hence reduces work that

otherwise needs to be done by the protocol KeyProd.

2. Disclosure by Clients’ Approval. This variant achieves a solution to the following scenario: Assume

that clients are not supposed to see the result of C’s computation. However, if all participating

clients give their approval, C is able to read the result (while clients stay oblivious to this result).

3. Interactive Decryption by all Clients. If clients should learn the result only if all participating

clients get together (and not each client independently as in our original construction), this variant

can be run instead of protocol TransDec in order to make the decryption interactive between all

clients. Decryption is successful if and only if all clients participate in this interaction (again in

the semi-honest model).

Intermediate Key Aggregation. Assume that the (encrypted) private data of a client Q partici-

pating in our protocol is not sent to the server C directly (as depicted in Figure 3), but goes through

other clients Q1, . . . , Qℓ (a subset of all clients P1, . . . , Pn). The protocol presented here optimizes

KeyProd in this scenario: Recall, that KeyProd takes all the participating clients’ ciphertexts (Ai, Bi)

as input and transforms these to encryptions under the product Prod.pk of all participating public

keys. The optimization we aim for does the aggregation of the public keys of the clients Q,Q1, . . . , Qℓ

before the ciphertexts end up at the server C. More precisely, let (A,B) be a ciphertext of a message

m encrypted under a public key pk which arrives at client Qi, i = 1, . . . , ℓ. This client can then use its

own public key pki in order generate an encryption of the same message m but encrypted under the

product pk · pki mod N2. This “key aggregation” is one step that otherwise had to be done by the

second server S in the original algorithm KeyProd. Since Qi knows its own private key, it can use the

first component A and raise it to the power of its private key. The result of this can then be multiplied

with the second component B which transforms the ciphertext (A,B) to an encryption under pk · pki

mod N2. Details of this are described in Figure 8.
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Client Qi has private key ski

Upon retrieval of ciphertext (A,B) (encrypted under pk):

B ←− Aski ·B mod N2

output ciphertext (A,B)

Fig. 8. Upon retrieval of a ciphertext (A,B) of m under pk, client Qi produces an encryption of m under
pk · pki mod N2, i = 1, . . . , ℓ.

The correctness of this algorithm is immediately seen, since when (A,B) = (gr mod N2, pkr(1 +

mN) mod N2), we have that B = Aski+sk(1 +mN) mod N2 since pkr = grsk = Ask mod N2.

The security of this variant is implied by the security of the BCP cryptosystem. This is because

the first client Q in the chain of clients is simply giving away a fresh encryption under its own public

key.

Disclosure by Clients’ Approval. Assume that the clients are not allowed to see the actual result

f(m1, . . . ,mn) of the computation done by the server C, but if all clients approve it, C should be able

to retrieve the result (while all clients stay oblivious). More precisely, let (A,B) denote the encrypted

result of the computation done by the server C before applying algorithm TransDec to it (so (A,B)

is an encryption under the public key Prod.pk). We assume that the participating clients P1, . . . , Pn

are not supposed to see the (encrypted) result, but on their approval (from all of them), the server C

should be able to decrypt (A,B) in order to see the result of the computation. To achieve this, we can

run protocol ODApproval of Figure 9 instead of TransDec. The basic idea of this protocol is to run the

Clients P1, . . . , Pn with
secret keys sk1, . . . , skn

Client Pi (i = 1, . . . , n):

Xi ←− A
ski mod N2

A to all clients
←−−−−−−−−−−−−−−

Xi
−−→

Server C, stores Prod.pk and pk1, . . . , pkn

On input ciphertext (A,B) (encrypted under Prod.pk):

Pick random ρ
U
←− ZN

(A,B)←− (A · gρ mod N2, B · Prod.pkρ mod N2)

Upon retrieval of X1, . . . , Xn:
K ←−

∏n
i=1 Xi mod N2

m←− B/K−1 mod N2

N
Output plaintext m

Fig. 9. ODApproval: Server C asks all participating clients for their approval to disclose the encrypted result
to C while all clients stay oblivious to this result.

“key aggregation” in reversed order, meaning that C blinds the first component A of the encrypted

result and sends it to the clients. By using their respective private keys, each client returns a modified

version of A. Now, recall that the result is encrypted under the product Prod.pk of all clients’ public

keys. Therefore, these modified versions of A can be used by C to “divide out” the public keys of each
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individual client seperately, ending up with a encryption under the public key 1 which simply is the

plaintext itself.

The correctness of this protocol is shown by proving that if (A,B) is an encryption of m′ under the

public key Prod.pk, then the output m of ODApproval equals this message m′. If (A,B) was encrypted

by using randomness r, then

(A,B) = (gτ mod N2,Prod.pkτ (1 +m′N) mod N2), (9)

where τ = r + ρ. But K =
∏n

i=1 A
ski

mod N2 = Prod.pkτ mod N2 and so

m =
(1 +m′N)− 1 mod N2

N
= m′. (10)

As for the security, we note that the clients do not learn anything at all since the plaintext is encoded

in the second component of the ciphertext (A,B) which is never sent to any of the clients. So the

plaintext remains information theoretically secure.

Concerning the server C, we recall that due to the semantic security of the BCP cryptosystem, C

is not able to compute the randomness used to encrypt (A,B) and so the clients’ messages Xi are

indistinguishable from random elements in 〈g〉. This also implies that as long as one of the messages

Xi is missing, C is not able to decrypt: Assume that the final message Xn is missing and C already

computed K ′ =
∏n−1

i=1 Xi mod N2. Trying to decrypt (A,B) = (gr mod N2,Prod.pkr(1 + mN)

mod N2) using K ′ results in the ciphertext (gr mod N2, pkrn(1+mN) mod N2), i.e., an encryption

under the public key of Pn which is the client from whom the message Xn is still missing.

Interactive Decryption by all Clients. Assume that we want all participating clients to decrypt

the result of C’s computation together (in an interactive protocol) so that neither the server C nor

the server S learn the result, but all clients do (if and only if all clients participate). Essentially, this

can be achieved by using the protocol ODApproval (cf. Figure 9). Server C sends the re-randomized

encryption (A,B) to all clients and then, instead of sending the values X1, . . . , Xn to the server C, for

each i = 1, . . . , n, client Pi broadcasts its respective value Xi to all other clients. Upon retrieval of all

these values X1, . . . , Xn, each client is now able to decrypt (in the same way as C does in Figure 9) the

ciphertext (A,B) to reveal the underlying result of C’s computation. The correctness of this protocol

follows from the correctness of ODApproval.

The same argument as for the previous variant shows that all messages X1, . . . , Xn need to be

received in order to decrypt the ciphertext (A,B). So decryption is not possible until all clients

broadcasted their respective valueXi. Since the clients never see the (encrypted) private inputs of other

clients, they cannot learn more than the decryption of (A,B) which is the result of the computation

done by the server C.

6 Performance

The performance of our contribution depends on the security parameter κ, the number of clients n,

the number of additions and multiplications performed, and the network performance (bandwidth and
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latency). All algorithms, except Init are solely based on arithmetic operations (addition, subtraction,

multiplication, exponentiation, inversion, division, comparison) modulo N or N2 and random number

generation. The size of N grows linearly with κ. A full overview of the complexity of each protocol

step is given in Figure 10 (a). To show that our system can be used in practice, we implemented a

proof-of-concept version of all protocols in python. Because the speed of the implementation depends

mainly on the speed of the bignum library, we used the GMP library though pythons gmpy module.

The GMP library is known to be asymptotically faster than pythons native bignum library, when it

comes to processing bigger numbers. GMP offers all basic operations we need, except for the generation

of safe primes numbers. Therefore, we also used the OpenSSL library through a custom C-binding,

but solely for generating safe prime numbers. We used a TCP network connection over the loopback

interface for transferring data between the two servers.

The runtime of our code is heavily influenced by the size of N . We recommend a size of N of at

least 1024 bit, while 1536 or 2048 bit are better choices for security reasons. Therefore, we performed

all benchmarks with these three security parameters. We performed all tests on a Lenovo Thinkpad

T410s with an Intel Core i5 M560 running at 2.67 GHz with Debian Sid, Python 2.7.3rc2 and gmpy

1.15-1. We ran all clients and both servers on the same host, so that network latency can be ignored.

Algorithm Init has the worst time complexity due to the generation of two safe primes. Its runtime is

expected to vary, because the number of instructions it needs to execute in order to find two suitable

primes depends on the random numbers generated by the algorithm. Figure 10 (b) shows the runtime

distribution of Init, depending on κ. 20 tests were performed for each choice of κ, and it is clearly

visible that the runtime varies a lot. In the next step, we determined how long it takes to encrypt

all client’s inputs, transcode them at the server and hand the result back to the clients (omitting

the initialization step). Figure 10 (c) shows that our implementation scales linearly with the number

of clients. Without any arithmetic operations, we can perform a full protocol run with 16 clients in

1.7 seconds, using a 1536 bit modulus. Finally, we were interested in the runtime of Add and Mult.

Figure 10 (d) shows that an addition is much faster than a multiplication. With a 1536 bit modulus,

about 25,000 additions, but only 5 multiplications can be performed per second. The results show

that our scheme is really useable in practice.

7 Applications

Finally, we present two applications of our general-purpose construction, namely privacy-preserving

face recognition and private smart metering, which benefit from the non-interactive nature of our

protocols. In order to demonstrate the practicability of our approach, we decided to implement the

much more complex application of these two, namely privacy-preserving face recognition.

Privacy-Preserving Face Recognition. Face recognition is a widely-used tool in many areas of

modern everyday life, among which social networks probably is one of the most important. Many

social networks use face recognition tools for things like automatic photo tagging [5] or in order to

help law enforcement agencies to prosecute suspected persons [3] (to name just a few). This is usually

being done without the explicit consent of users, raising important privacy concerns, as convincingly

demonstrated in [23] and [52]. Therefore, Erkin et al. [23] proposed the first privacy-preserving protocol
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(a) Complexity of the protocol

Traffic Round
Algorithm Time in bits trips

Init O(κ5/ log(κ)2) on S 4κ 0
Data Upload O(κ3) on each client 6nκ 0.5

O(nκ2) on C
KeyEval O(nκ3) on S 8κ 1

O(nκ2) on C
Add O(κ2) on C 0 0
Mult O(κ3) on C 12κ 1

O(κ3) on S
TransDec O(nκ3) on C 4(n+ 1)κ 1

O(nκ3) on S
Data Retrieval O(κ3) on each client 4nκ 0.5
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Fig. 10. Complexity and runtime analysis of the protocol.

for face recognition which, however, heavily relies on user interaction. Unfortunately, their solution

generally does not work in the social network setting where users access their profiles by using resource-

constrained mobile devices which are not always online. Therefore, having a completely non-interactive

(with the users) solution is crucial in such scenarios. Additionally, users typically want to use their

own public keys to encrypt their private images (which, again, is not possible in previous solutions).

Similarly to Erkin et al. [23], the database of “known images” (i.e., when given a face image, we

want to find out whether it is in the database or not) is unencrypted in our setting. For instance,

in the scenario of helping with the prosecution of suspected persons, the database of known images

consists of the suspected persons and is therefore known by the social network provider in plaintext

(unencrypted). On the other hand, it is desirable to have all users’ profile pictures (or images of users’

holidays etc.) encrypted, so that the social network provider is only able to recognize faces that are

found in the database while all other faces remain hidden.2 To achieve this goal, we adapt the privacy-

preserving protocol by Erkin et al. [23] to our framework and hence rely on the standard eigenfaces

recognition algorithm [54, 53], which can be summarized as follows:

Enrolment. This is the first phase, in which a “face space” is determined on the basis of a set of M

training images Θ1, . . . , ΘM (represented as a vector of length L). Later on, in the recognition phase,

2 Note that the correct recognition is only assured with a certain probability, since the tool of face recognition
is error-prone. In the implementation that we use (cf. [23]), the correct classification rate is approximately
96%.
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face images will be projected onto this “face space” and matched against the training images. Creating

the “face space” is done by

1. computing the “average face” Ψ = 1
M

∑M

i=1 Θi,

2. computing the “difference vectors” Φi = Θi − Ψ for all i = 1, . . . ,M ,

3. applying the Principal Component Analysis (PCA) to the covariance matrix C = 1
M
AAT where

A is the matrix [Θ1 Θ2 . . . ΘM ] (see [54] for details).3 This yields orthonormal eigenvectors with

associated eigenvalues of C,

4. selecting K ≪M eigenvectors u1, . . . , uK (the “eigenfaces”) associated to the K largest eigenval-

ues,

5. and projecting Θ1, . . . , ΘM to the “face space” spanned by u1, . . . , uK to get their “feature vectors”

Ω1, . . . , ΩM where Ωi = (ωi1, . . . , ωiK)T with ωij = uT
j (Θi − Ψ) for all j = 1, . . . ,K and i =

1, . . . ,M .

Recognition. Given a face image Γ , recognition is done by

1. (“Projection” step) projecting Γ onto the face space by computing its “feature vector” V =

(v1, . . . , vK)T with vj = uT
j (Γ − Ψ) for all j = 1, . . . ,K,

2. (“Distance” step) computing the squares D1, . . . , DM of the Euclidean distances between V and

Ω1, . . . , ΩM as Dj = ‖V −Ωj‖
2 for j = 1, . . . ,M ,

3. (“Minimum” step) and reporting a match if the smallest distance Dmin = min{D1, . . . , DM} is

smaller than a given threshold τ .

We stress that since the database of “known images” is known by the social network provider, all

steps of the enrolment phase can be done in the clear, without using any form of encryption. Hence,

we only have to transform the steps of the recognition phase into the encrypted domain. We do this

by a rather straight-forward adaption of the protocols in [23] to our framework:

Encrypting Images. Assume that a user U wants to upload an encryption of a private face image Γ

under its respective public key pk to the server C (here, C is the social network provider). Recall that

we represent images as vectors of length L, i.e., Γ = (Γ1, . . . , ΓL)
T . User U encrypts the image Γ

component-wise, which we denote by EncImgpk(Γ ), i.e., EncImgpk(Γ ) = (Encpk(Γ1), . . . ,Encpk(ΓL))
T .

Projection. Given an image encryption EncImgpk(Γ ) = (c1, . . . , cL)
T of a face image Γ under a user’s

public key pk, server C computes for all i = 1, . . . ,K:

vi := Encpk



−

L
∑

j=1

uijΨj



 ·

L
∏

j=1

c
uij

j mod N2,

where uij denotes the j-th component of the i-th eigenface ui and Ψj denotes the j-th component of

the average face Ψ . This way, C obtains the encrypted feature vector V = (v1, . . . , vK)T corresponding

to Γ .

Distance. Given the projected face vector V = (v1, . . . , vK)T from the “projection” step, C computes

the Euclidean distances to the feature vectors Ωi = (ωi1, . . . , ωiK)T for i = 1, . . . ,M , with the help

3 Actually, PCA is applied to the much smaller matrix ATA with appropriate post-processing [54].
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of server S as follows: First, C computes for all i = 1, . . . ,M : σi1 := Encpk

(

∑K
j=1 ω

2
ij

)

and σi2 :=
∏K

j=1 vj
(−2ωij). Note that C can perform these computations without interacting with S. Second, C

computes σ3 :=
∏M

i=1 Mult(vi, vi). Note that Mult runs interactively with server S. Finally, for all

i = 1, . . . ,M , C computes the results δi := σi1 · σi2 · σ3, which are encryptions of the squares of the

Euclidean distances of V with Ω1, . . . , ΩM .

Minimum. In this final step, C performs a joint computation with S in order to determine the minimum

of the encrypted distances δ1, . . . , δM together with an encryption of its index id ∈ {1, . . . ,M} and to

check whether this minimum is smaller than a given threshold τ . This is done by encrypting τ (under

pk) and treating it as an additional (encrypted) distance with the special index 0 (which we encrypt

under pk as well). The distances as well as the indices have to be stored encrypted since only the user

U should be able to see the final result of this minimum-finding. The protocol to perform this step in

a privacy-preserving manner is exactly as in [23] and we refer the reader to this reference for details

since the protocol is rather complex and would go beyond the scope of this paper. We stress that

one simply has to replace the parties Alice and Bob in [23] by servers S and C, respectively, and the

Paillier cryptosystem [49] by the BCP cryptosystem [15]. Also, we note that in our implementation we

solely used the BCP cryptosystem, while [23] switches to the homomorphic encryption scheme DGK

by Damg̊ard, Geisler, and Krøigaard [20] for efficiency reasons.

We stress that we deliberately implemented all protocols only by using our general-purpose con-

struction as is, without any tricks to optimize the performance, such as switching to the much more

efficient DGK cryptosystem for computing the minimal distance, or treating the fact that most com-

putations can be done in an offline pre-computation phase. Note, however, that all such tricks can be

applied to our protocols in exactly the same way as it is done in [23]. We did not implement these

tricks in order to show the performance of our general-purpose construction in its plain as-is state

without tweaking it to specific application scenarios.

Performance Analysis. We implemented the complete protocol for privacy-preserving face recogni-

tion, as described above, in python while basing it on our implementation of our general-purpose

construction described in Section 6. This means that we used the GMP and OpenSSL libraries, while

all tests were performed on a Lenovo Thinkpad T410s with an Intel Core i5 M560 running at 2.67

GHz, running Debian Sid with Python 2.7.3rc2 and gmpy 1.15-1. The security parameter of our

general-purpose construction was fixed to κ = 1024, i.e., the size of the RSA-modulus N is 1024 bits.

In order to avoid confusion, we used the same set of parameters for the privacy-preserving face

recognition protocol as [23]. This also ensures the same reliability results as in [23] (achieving a correct

classification rate of approximately 96%). In particular, we used the “ORL Database of Faces” from

AT&T Laboratories Cambridge [1] containing 10 images of 40 different subjects, yielding a total

amount of 400 images.4 These images are of size 92× 112 pixels, which we represented as vectors of

length L = 92 · 112 = 10304. It is demonstrated in [23] that K > 12 eigenfaces in the enrolment phase

do not significantly increase the correct classification rate, which is why we used their suggestion of

K = 12 (for M = 10, we used K = 5 instead). Table 1 depicts the results of our performance analysis

4 We actually use a subset of these which is determined through the size M of the database of “known
images”.
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Traffic Traffic Runtime w/
Database Runtime C to S S to C remote S

size M in sec. in MB in MB in sec.

10 106 0.6 0.7 100
50 297 4 4.2 294
100 533 8 8.5 506
150 761 12 13 744
200 1004 16 17 970

Table 1. Complexity of performing privacy-preserving face recognition with our general-purpose construction.

of the complete privacy-preserving face recognition protocol (containing both C’s and S’s costs). The

first column shows the amount M of feature vectors stored in the database, while the second column

shows the runtime (wall clock time in seconds) of the full protocol per invocation with one face image

(that is to be matched with the database). The runtime shown in the second column contains the

enrolment phase which in each case took less than 1% time of the shown overall runtime. We therefore

included the enrolment phase here, since it does not significantly change the overall performance.

The communication complexity (measured with iptables) is summarized in the other two columns:

the third column shows the amount of data (in megabytes) sent from server C to server S, while the

fourth column shows the total traffic from S back to C.

Finally, the fifth column shows the runtime (in seconds) of the full protocol (per single query) when

using a remote server S over the Internet. For this remote setup, we connected our Lenovo Thinkpad

T410s (server C) with a 20 Mbit/s consumers cable connection to the Internet and started our server S

implementation on a remote system equipped with a 3.2 GHz AMD Phenom II X6 1090T processor in

a datacenter connected to the Internet with a Gigabit Ethernet adapter. The average round trip time

to that system was 32 ms, measured with the linux “ping” utility. Observe that the overall runtime

when running server S remotely is less than when running S locally. This is due to the fact that the

remote system that we used has higher performance than the local one.

In summary, for a database of size M = 200, a full protocol run requires approximately 16 minutes

(both when running S locally or remotely) for checking whether a given encrypted image is contained

in the database or not. This demonstrates that our general-purpose construction can really be used in

practice for performing facial recognition in a privacy-preserving manner in the social network setting,

even without any efficiency optimizations. Again, we stress that we can apply the same performance

tweaks to our protocol as Erkin et al. [23], which would yield a significant efficiency boost. Also, we

note that we did not use explicit parallelism in our implementation, so that the performance can

moreover be improved by using multiple CPU cores. We leave the elaboration of such possibilities as

interesting future work.

Private Smart Metering. Another interesting application domain, actively promoted by many

governments, concerns the deployment of smart grids for modernizing the distribution networks of

electricity, gas or water. For such services, smart meters record the consumption of individual con-

sumers on a fine-grained basis and send all collected data to a central authority (the supplier), which

in turn uses these inputs to compute overall consumptions, bills (by using dynamic pricing schemes),
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usage patterns, or to detect fraud or leakage in other utilities. Due to the collection of massive amount

of sensitive data, privacy concerns have been raised in the past years, and various solutions protecting

the consumers’ privacy have been proposed for different computing tasks of the supplier. Current

solutions either only consider eavesdropping outsiders (and not the supplier) [43], require interaction

and high computational overhead at the smart meters [28, 42] or rely on trusted components alongside

each smart meter [47, 38].

Our construction of Section 3 offers a non-interactive protocol with very low computational costs

at the smart meters. The smart meters would act as the clients in our protocol description of Section 3,

sending their encrypted private data to the supplier C. With our cryptographic protocol between C

and a second server S, the supplier C can essentially compute any function on the consumers’ inputs

in a privacy-preserving way. Furthermore, concerning private information aggregation, we can extend

the distributed incremental data aggregation approach of [43] in order to protect the consumers’

privacy from the supplier C as well. In [43], the idea is to encrypt each consumer’s private data with

an additively homomorphic encryption scheme under the public key of the supplier C and then send

this encrypted information through other households in the neighbourhood (this is due to the use of

short-range communication networks) in order to finally reach the supplier. Intermediate households

aggregate their private data to the one they receive by using the additive property of the cryptosystem.

Once the supplier received the data from all these chains of households, it aggregates these encryptions

together to get the aggregation of all consumers’ inputs. In [43], only eavesdropping adversaries (such

as the intermediate households) are considered. By employing our construction variant “Intermediate

Key Aggregation”, we can protect the consumers’ privacy from intermediate households as well as from

the supplier: Consumer P1 encrypts its private data by using its own public key pk1 and sends it to

the next consumer P2 which in turn uses the “Intermediate Key Aggregation” algorithm to transform

the encryption into an encryption under the product pk1pk2 mod N2 of the two consumers’ public

keys. Furthermore, P2 encrypts its own private input under this product pk1pk2 mod N2 as well

and uses the additively homomorphic property of the BCP cryptosystem to aggregate its encrypted

input to the encrypted input of the first consumer P1. These steps continue through the whole chain of

consumers until the supplier C is reached. C can now aggregate all the remaining consumers’ encrypted

inputs (similar to [43]) but still is unable to see any of the underlying plaintexts. Depending on the

application, we can continue in three ways:

1. C decrypts the result jointly with the second server S (recall that S still has the master secret).

2. We use the variant “Disclosure by Clients’ Approval” which means that C can only decrypt if all

consumers approve it.

3. C sends the encrypted result of the aggregation (or any other evaluation on the basis of this

aggregation) back to the consumers for local decryption.

We stress that due to the high efficiency of our solution, it is particularly interesting in the smart grid

scenario as it minimizes computational overhead at the smart meters.
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8 Conclusion

Assuming the existence of two non-colluding but untrusted servers, we presented an efficient general-

purpose SMC protocol that requires no interaction of the users at all, and allows the evaluation

of arbitrary functions on inputs that are encrypted under different independent public keys. We

showed our protocol to be secure in the semi-honest model and highlighted its practicability by giving

experimental results. Two application scenarios, one on privacy-preserving face recognition and one

on private smart metering, underlined the applicability of our construction to the real-world.

We consider the extension to the malicious adversarial model as future work. Furthermore, we are

planning to experiment with certain functionalities used in other application scenario, e.g., compu-

tations on medical health records. To this end, it seems useful to integrate our work into tools for

automating SMC [8, 34].
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